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SEQUENTIAL QUADRATIC PROGRAMMING
ALGORITHMS
FOR OPTIMIZATION

Francisco Javier Prieto, Ph.D.
Stanford University, 1989

The problem considered in this dissertation is that of finding local min-
imizers for a function subject to general nonlinear inequality constraints,
when first and perhaps second derivatives are available. The methods stud-
ied belong to the class of sequential quadratic programming (SQP) algo-
rithms. In particular, the methods are based on the SQP algorithm embod-
ied in the cod~ NPSOL, which was developed at the Systems Optimization
Laboratory, Stanford University.

The goal of the dissertation is to develop SQP algorithms that allow
some flexibility in their design. Specifically, we are interested in introduc-
ing modifications that enable the algorithms to solve large-scale problems
efficiently. The following issues are considered in detail:

o The use of approzrimate solutions for the QP subproblem. Instead of
trving to obtain the search direction as a minimizer for the QP, the
solution process is terminated after a limited number of iterations.
Suitable termination criteria are defined that ensure convergence for an
algorithm that uses a quasi-Newton approximation for the full Hessian.
Theorems concerning the rate of convergence are also given.

o The use of approzimations for the reduced Hessian in the construction
of the QP subproblems. For many problems the reduced Hessian is
considerably smaller than the full Hessian. Consequently. there are
considerable practical benefits to be gained by only requiring an ap-
proximation to the reduced Hessian. Theorems are proved concerning
the convergence and rate of convergence for an algorithm that uses a
quasi-Newton approximation for the reduced Hessian when early ter-

mination of the QP subproblem is enforced. S e o
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o The use of rract second dertvatires, The use of second derivatives,
while having significant practical advantages. introduces new ditficul-
ties: for example, the QP subproblems may be non convex, ard even 1
minimizer for the siubproblem is no longer guaranteed to vield a suit-
able search direction. It is shown how to construct suitable search
directions from approximate solutions to the QP subproblem. \lso.
theorems are proved for the convergence and rate of convergence of
these algorithms.

Finally. some numerical results, obtained from a modification of the code
NPSOL. are presented.
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Preface

“The whole of science is nothing more than a
refinement of evervday thinking.”

— Albert Einstein

The last forty vears have seen the introduction of numerous methods for
rhe solution of general nonlinear programs, and an expansion on their use
as satisfactory mathematical models for problems in many different fields
of human activity. Examples of this use can be found in areas as diverse
as general equilibrium models in economic theory. structural optimization
in mechanical engineering. microeconomic models of the firm in business
administration, or optimal power flow in electrical engineering. attesting
both to the universality with which the structure of the mathematical model
can be recognized in Nature. and also to the existence of efficient methods
ro obtain accurate and satisfactory answers to the problems considered.

Despite the fact that the widespread use of these models would not have
been possible without the existence of efficient solution algorithms. the opin-
ion is frequently expressed among researchers in the field that no general-
purpose algorithm available at this time coinbines all the desirable features,
and in particular, that the algorithms available are limited regarding either
the size or the difficulty of the problems thev can solve.

The search for more reliable and faster algorithms constitutes the basic
motivation for the work presented in this dissertation. It would have been
presumptuous to have set as a goal the seaich for answers to all the unan-
swered questions left in this field; it has been our objective simply to explore
some aspects promising improvements {or algorithms oriented towards the
solution of large-scale problems. on the understanding that it is in this area
where a more substantial amount of work seems left to be done. [u any
event, it is our hope that the exploration of these topics, independent of the
setting in which they have been studied. may help to shed some light on
issues of general interest in the field.

The work presented in this dissertation would not have been possible
without the financial assistance provided by the Bank of Spain, and the
earlier resnlts, generons support and assistance of the SOL algorithms group

vi




at Stanford University. Special mention is deserving of my advisor. Prof.
Walter Murray, who not only suggested the main ideas explored in this
disserration and guided the course of the work to its present state, but
also found the time for many enlightening conversations on the most diverse
topics. Profs. Philip Gill and Michael Saunders were always willing to answer
my many questions, and provided comments and suggestions from which
this work has benefited greatly: the example of their behavior (and that of
my advisor) has been one of my most important lessons during this period.
Although I had little opportunity to benefit from her presence, Dr. Margaret
Weight wiil be fendly remembered for her energy and dedication.

I am indebted to Prof. George B. Dantzig for his generous invitation
to visit this department during the summer of 1983: this work is one of
its consequences. It has been a privilege to have him in my dissertation
committee.

[ would like to express my gratitude to the students working with the
SOL group, Samuel Elder:--eld. Anders Forsgren. Aeneas Marxen and Dulce
Ponceledn. for providing a very pleasant and stimulating atmosphere. Spe-
cial thanks must be given to Anders Forsgren for his invaluable comments
and suggestions. I am also deeply grateful to Dr. Ulf Ringertz for his many
intelligent remarks. and for having provided the code for the structural op-
timization test problems.

Finally. I would like to thank the faculty members, staff and students at
the Department of Operations Research. who helped in many different ways
to make this a productive and enjovable experience.

F.J. Prieto
Stanford, 1989
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Chapter 1

Introduction

In this chapte. we introduce the subject of the report, and give some motivation for the

research undertuken. Inaddition, a brief summary of previous work in this area is presented.

1.1. The problem and algorithms

This report is concerned with issues in the field of nonlinear programming., which in its most
voneral forn is that of finding extreme points (minimizers or maximizers}) for a univariate
function. subject to certain conditions on the acceptable values for the variables.

For the purpose of this work. the problem is assumed to take a more restricted form.
The effort is limited to the determination of local extreme points, and the conditions on the
values of the variables are assumed to be given by a svstenn of nonlinear inequalities. The

nonlinear program considered takes the following form:

minimize Fr)
reRn NLP
“t. clr) >0,
where F o R — Rand e R® - ™.

The most reliable algorithms for solvin. this problem make use of the derivatives of the
functions defining the problem, when they exist. In this spirit. the algorithms to be studied
try to exploit the structure of the problem by constructing local approxiimations from the
derivavive information available. This requires additional conditions on the form of the
problem: the basic assumption is the twice continnons differentiability of the functions &

and . In addition, some other assnmptions of a more technic 1 nature are required; these
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assumptions will be specified later.

SQP algorithms

It is not known in general how to compute a so'ution of the nonlinear program NLP in
a finite number of iterations (obvious exceptions being the cases of linear and quadratic
programming). aud so the algorithms developed for its solution are sequential in nature,
that is. an infinite sequence of points {rg}2) is generated, such that the limit points of
convergent subsequences are solutions for the problem.

Anmong sequential algorithuns a particular class, that of sequential quadratic program-
ming (SQP) algorithms, seemis to be regarded as the best cloice for the solution of small,
dense problems {see Stoer [StoRd] or Gill et al. [GMSWSR], for example). The algorithms
considered helong to this family of SQP algorithms, and the concern of our research is to
extend the class of problems for which these algorithms may be an efficient choice.

The next paragraphs are devoted to commenting upon some of the features of SQP
algorithms, and their relevance to this work. We start by describing the most general form

that such an algorthm may take,
o The algorithm generates a sequence of points {ry} converging to a solution.

o At cach point. rg. a linearly constrained quadratic program (QP) approximating

locally the NLP problem is generated. and a direction py is obtained from it.

e ‘The next point is defined to be either x4 + pi or the result of a linesearch from

along pr. in such a way that the value of a certain merit function is decreased.

We are not concerned with the study of a general class of algorithms, like the one
described above, but rather with the definition and study of specific algorithms within this
class.  Althongh the particular forms of these algorithms are presented in the following
chapters, we point out here that their most significant characteristics are the use of a
linesearch to determir ' o nexo point in the sequence, and the construction of quadratic

siubproblems of the

mi’x)léwlizv VP’(zk)7)) + %p'l‘llkp Qp
l s.t. c{ri)+ Ve(ze)p 20
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for some matrix /{1, whose properties are described as part of the definition of the different

aleorithins considered.

Goal of the report

Expanding upon previous remarks, this report is specially concerned with modifications to
the way that QP approximations are constructed and solved. The modifications considered
are oriented towards defining more flexible SQP algorithims in order to make them more
suitable for the solution of large-scale problems. Specifically, we wish to relax the usual
assumption that the search direction is obtained as a minimizer of the QP subproblem. and
also to allow the use of exact second derivatives, or to require only an approximation to the
rednced Hessian. Finallv, it may be possible to take advantage of the increased flexibility

to mmprove the performance of SQP methods even on small dense problems.

Incomplete QP solution

Throughout, we develop algorithms that obtain the search direction for a quadratic sub-
problem in a limited number of iterations, which often in practice is significantly smaller
than the number required for the computation of a minimizer for ithe QP subproblem: the
search direction obtained in this form will be referred to as an incomplete QP solution. In
general, the algorithm moves from a starting point satisfving certain mild conditions to the
first stationary point, and the search direction is constructed from the information known
at that point.

The QP subproblems generated in the algorithins developed so far have been normally
obtained by using quasi- Newton approximations to the full or the reduced Hessian: we shall
also cousider the option of using the exact Hessian in the definition of .

Quasi-Newtou approximations generate matrices that are positive definite, and at the
same time allow the condition numbers of the approximating matrices to be coutrolled. In
this way, a convex subproblem is obtained, and if it is feasible, its solution exists and is
unigue. In contrast, the use of exact Hessians leads to non-convex subproblems; moreover,
Iy may now be singular. On the other hand. it will be seen that the use of the exact

Hessian leads to stronger convergence results and an improved rate of convergence,
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Convergence assumptions

The convergence of the algorithms in this family normally requires additional conditions on
the form of the problem. An aim that underlies all the work presented in this report is to
try to develop algorithms whose convergence proofs make use of a reasonably weak set of

assumptions. The ones that can be most frequently found in the literature are:

e existence and continuity of second derivatives for the objective and constraint func-

tions;
o full-rank Jacobians at solutions of the problem;

¢ bounded (above and below) eigenvalues for the approximations to the Hessian of the

Lagrangian function;
e strict complementarity at solutions of the problem;
o existence of a feasible point for each subproblem;

e compactness of the feasible region. or of the region where the iterates lie.

The search direction

Together with these “regularity” assumptions on the form of the problem, it is necessary to
specify the form of the direction of movement obtained from the QP subproblem, and that

of the multiplier estimates. In the literature, the usual choices have been:

e the direction of movement is obtained as the exact solution of the QP subproblem,

conslrucied as a COLvex Program;

o the multiplier estimates to be used are either the QP multipliers at the last minimizer

obtained, or the least-squares multipliers at the current point.

Details about these choices are given in the next section.

Defining a solution

In the previous paragraphs several references have been made to solutions of the NLP

problem. The following remarks try to clarify what is understood by a solution.

]
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I q

Local solutions can be characterized in terms of what are known as the Karush-Kuhn-
Tucker (KKT) conditions (sece for example Fiacco and McCormick [FMCG68] or Gill et al.
[GMWRI]). given in terms of the first and second derivatives of the Lagrangian function
for the problem. The conditions come in different forms, and in particular there are sets
of necessary conditions, and sets of sufficient conditions, but there is no practical necessary
and sutlicient characterization of this form for the general case. Given that the previons
algorithms obtain points that satisfy the necessary conditions on the first and second deriva-
tives. it is not possible to guarantee that the points obtained correspond to solutions of the
problen, unless additional assutniptions are satisfied.

Also, given that no convexity assumption is made on the functions defining the problem.,
no a priori relationship can be established between local solutions and global solutions: this
impiies that the algorithms to be presented will not normally be able to determine whether
the solutions obtained are global solutions.

The following terms will be used to define what solution points the algorithms are able

to find.
o Stationary point. A feasible point r such that
\“[“(.L‘):V(‘(I)T/\*. /\T(‘Z(JT):O t=1,...,m
for some multiplier vector A* € ™.
e First-order KKT point. A stationary point r such that A* > 0.

o Sccond-order KK'T point. A first-order KK'T point = such that. if A denotes the rows
of the Jacobian Ve(r) corresponding to the constraints having positive multipliers at
I

Vee AN oIS Lz, M) e >0,
where the Lagrangian function L is defined as
Liz. Ay = F(r) = Ale(r).

and Y, L{r.A) denotes the Hessian of the Lagrangian function, when the (partial)

derivatives are taken only with respect to the variable r.

In the case when analytical second derivatives are unknown or directions of negative

curvature are not computed, the algorithms to be presented only gnarantee that a solution

L
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is a first-order KKT point. When exact Hessians are known and directions of negative
curvature are determined and used, the solution obtained by the algorithm will be a second-

order KK'T point.

1.2. Historical background

This section presents a brief history of the evolution of SQP algorithms. Surveys for this

area can be found in [GMWSI]. [Po83] or [GMSWRS], for example.

The origins

The earliest reference found to methods of this family is Wilson’s doctoral dissertation
(Wil63]. His algorithm. formulated for the special case of convex problems, solved an
inequality constrained quadratic subproblem in each iteration, formulated using the exact
Hessian of the Lagrangian function. and obtained the next iterate as zx + pi (no linesearch
was performed).

In general. a method of this form will not be globally convergent unless some precautions
are taken in accepting the next step. Murray [Mu69] suggested a similar algorithm, but now
a linesearch was performed on the £; merit function, to guarantee global convergence. Also,
quasi- Newton approximations to the Hessian of the Lagrangian function could be used in
the generation of the subproblem, relaxing the requirement of convexity for the problem.

SQP algorithms became popular through the work of Biggs [Big72], Har [Han76] and
Powell (Po78] (in the literature SQP methods are sometimes referred to as Wilson-Han-
Powell algorithms). Biggs proposed an algorithm similar to the one in [Mu69], with the
difference that the quadratic subproblem had only equality constraints, and a term for the
multiplier estimate had been added to the constraints.

The algorithm proposed by Han solved an inequality constrained QP subproblem, where
the Hessian was given by a quasi-Newton approximation to the Hessian of the Lagrangian
function, although it required the assumption that the Hessian was positive definite on the

whole space. Also. the “exact™ {or €) penalty function

Plr.py= F(z)+pY,; max((), ~C1(;L‘))

was used as a merit function within the linesearch.
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Powell proposed a method similar to the one in [Han76], but he was able to show that
the algorithi converged superlinearly even when the Hessian of the Lagrangian function
was indefinite at the solution.

fn the next puragraphs we focus on the evolution of the different elements of an SQP

algorithm: the merit function, second-order information. the multiplier estimate, etc.

The merit function

In all nonlinearly constrained optimization algorithms the choice of the merit function is of
great importance, not ouly because of its role in enforcing global convergence, but also in
order to ensure a satisfactory performance of the algorithm.

The ) {exact penalty) merit function has become a very popular choice after being
proposed by Han [Han7o] and Powell [PoTR] for SQP algorithms. Its advantage is that
for large enoungh values of the penalty parameter, minimizers for the NLT problein are
nnconstrained minimizers for the exact penalty function. On the other hand, the function
is not smooth, and in partienlar it is not differentiable at the solution of the problem.

Another option is the use of toe augmented Lagrangian
Lixr Aop)y= F(r) - Metz) + %[)(,’(.I,‘ )T(‘(.‘l‘)

as the merit function. It must be noted that this function incindes an additional set of
variables, the Lagrange multiplier estimates A, In order to compute the correct value of the
original variables r. it is necessary to obtain the correct value for the multiplier estimate.
In fact, this merit function has the property that, if the optimal multiplier vector is used,
there exists a finite value of the parameter p such that the solution of the problem is an
unconstrained minimizer of the merit function.

A property of this merit function is that it is smooth. In extensive tests, the performance
of algorithms using this merit function has been superior to that of methods using the exact
penalty function. On the other hand. any algorithin that makes use of this merit function
needs to take special care of the way the multipliers are estimated: a bad estimate may
inhibit convergence or degrade the performance of the method. The theoretical analysis of
these algorithins is also more complex because the additional variables A need to be taken
into account. Fhe wse of this merit function in an SQP framework was first suggested by

Wright [WriT6] and Schittkowski [Sehx1].
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The search direction

An important element of the algorithms presented in this report is the use of an incomplete
solution of the QP subproblem as the search direction for the merit function.

In the large-scale case, the number of QP steps required to obtain a minimizer for the
QP subproblems. pariicularly in the early iterations, may be very high. Regardless of the
inefliciency this mar introduce, practical implementations must impose a strict upper limit
on the number of QP steps. There is therefore a definite interest in defining an incomplete
solution whose computation requires a strictly limited number of steps.

Although there have been proposals in the literature to terminate the solution process for
the QP subprablems early. the great majority of SQP algorithms, including those mentioned
earlier in this scction, define the search direction from a minimizer for the QP subproblem.

An approcch solving QP subproblems inexactly is described in Dembo and Tulowitzki
[DTR3], where for a generic SQP algerithm an early termination rule is given in terms of
the norm of the reduced gradient for the subproblem. This rule gives a search direction pi
satisfying the condition

ok = well = ollipelD-

where p} denotes the minimizer for the kth QP subproblem.
We follow a different approach, presenting an early termination rule that is constructive

in nature, and that has a guaranteed bound on the effort necessary to satisfy it.

The multiplier estimate

An important aspect in the efficient implementation of methods using merit functions based
on the Lagrangian function is how to select the approximation to the Lagrange multipliers
Ain each iteration.

Most SQP algorithms (for example, [Han76] or [Po78]) define A as 7, the QP multiplier

obtained at the solution of the previous subproblem: Ay, = 7, where

VF(ag) + Hipe = Se(ay) 7k,
TZ'(V"(IUP& + r(rk)> = 0.

T, > 0.

1!

Unfortunately, in this case the change in the Lagrangian function is no longer monotonic

whenever the multiplier estimate is updated.
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An alternative is to use the least-squares multiplier estimate Ap,
N =1
Alek) = (Ve(m)Ve(ze)") Velai)V F(z)

and to treat it as a function of z. rather than as an additional variable, simplifying the
theoretical analysis of the algorithm. This idea appears to have been first introduced by
Fletcher [Fle70], where it was used to construct an augmented Lagrangian merit function
in order to solve an equality-constrained problem. For problem NLP with only equality
constraints, Powell and Yuan [PY86] have considered the use of an augmented Lagrangian
merit function that estimates the multipliers by A;, and they have shown several global and
local convergence properties for this function.

Another optiou. compatible with the use of the QP multipliers from the previous iter-
ation, is to treat the multiplier estimate as an additional set of variables in the linesearch.
This idea was suggested by Tapia [Tap77] for equality constrained optimization, and Schit-
tkowski [Sch81] introduced it in an SQP framework. A proof that the sequence {r\} con-
verges to a first-order KK'T point and the multiplier estimates converge to A* is given in

Gill et al. [GMSW386b).

Trust-region methods

An alternative to the use of a linesearch on a merit function to ensure global convergence
is the trust-region approach, where the size of the step is limited by imposing a constraint
on the norm of the solution for the QP subproblem.

In this framework, Fletcher [FleR5] proposed an algorithm that solved a quadratic sub-
problem minimizing the Lagrangian function for the QP subproblem, subject to a bound
on the ||.|[x norm of the solution.

Another application of this idea is given by Celis, Dennis and Tapia {[CDT85] for the case
when only equality constraints are present. Their algorithm is related to the conventional
trust-region approach in unconstrained optimization, in the sense that they impose a bound
on the value of the || .||, norm of the solution. Also, the lincarized constraints are replaced
by a second bound on the norm of their violation.

The algorithms we consider make use of a linesearch, and trust-region constraints are

not specifically included in the QP subproblems.
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Second derivative information

Several alternatives have been considered in the literature for the construction of the matrix
Hy containing the second-order information for the quadratic subproblem.

It was mentioned earlier that in the first SQP algorithm proposed, H was taken to be
the Hessian of the Lagrangian function at the current iterate. When the NLP problem is
convex, there are no special difficulties in solving the subproblem.

If the convexity assumption is not satisfied, as is often the case in practice, the sub-
problem can become much more difficult to solve. To avoid this risk, and to extend the
algorithm to cases where analytic derivatives may not be available, the most frequent choice
of H; has been the use of a positive definite quasi-Newton approximation to the full Hes-
sian of the Lagrangian function. In this way, a convex subproblem is still obtained, and
the subproblems cau be solved efficiently. A detailed discussion of quasi-Newton updates
can be found. for example, in Dennis and Moré [DM77] and Dennis and Schnabel {DS83].
Also. a description of different approaches to the implementation of this idea in an SQP
framework is presented in Gurwitz [Gur87].

A difficulty with this scheme is that the Hessian of the Lagrangian function is rarely
positive definite on the whole space (¢ven at a solution). It is likely therefore that the use
of quasi-Newton updates such as the BFGS method, will lead to indefinite approximations.
Scveial alternatives have been proposed to compensate for this problem. Powell [Po78]
presented a modification of BFGS for which positive definiteness was preserved and two-step
superlinear convergence was achieved. Another possibility is to approximate the Hessian of
the augmented Lagrangian function, where the penalty parameter has been selected large
enough so that the Hessian can be kept positive definite; see Biggs [Big72], Tapia [Tap77)
and Han (Han77].

Following the development of efficient QP solvers for indefinite problems, some updating
methods have recently been proposed for which only the positive definiteness of Z,{Hka
is preserved. where 7, denotes a basis for the null space of the Jacobian of the active con-
straints at ry. The motivation for these approaches is that at the solution ZTV . L(z,A)Z
will normally be positive definite. For this type of update, see for example Fenyes [Fen87].

Another alternative along a similar line is to try to approximate only the reduced Hessian
Z,;rllka. This scheme has the advantage of requiring the storage of a matrix that in many
cases is significantly smaller than the full Hessian. Reduced Hessian updating methods have

been proposed among others by Murray and Wright [MW78], Coleman and Conn [CC84],

e
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Nocedal and Overton [NOSH] and Gilbert [Gil87]. A study of the convergence properties of
these methods for the case when only equality constraints are present is given in Byrd and

Nocedal [BNssL

1.3. Contents of subsequent chapters

Chapter 2 describes the forin of the general algorithm, whose variants will be studied in
Chapters 1. 5 and 6. The conditions on the search direction and the multiplier estimate
are presented, the assumptions used for the convergence proofs are introduced, and several
results bearing on the reasonableness of the previous conditions are presented and proved.

Chapter 3 presents all results that are common to the convergence proofs for the different
algorithms. Given that the algorithms studied are defined to share many elements (the merit
function, the determination of the search direction, termination conditions for the linesearch.
etc.). it has been considered convenient to group in this chapter the results common to all
convergeuce proofs.

Chapter -1 studies the convergence properties of an algorithm that uses a quasi-Newton
approximation to the full Hessian. and a search direction constructed from information
available at a stationary point of the QP subproblem. It is shown that such an algorithm
is globally convergent (that is. it converges to a solution from any initial point), and that
it converges superlinearly under mild assumptions.

Chapter 5 considers the variant of the algorithm when a quasi-Newton approximation
to the reduced Hessian is used. again only utilizing information at a stationary point of the
QP subproblem. This algorithm is also shown to be globally convergent, but it converges
two-step superlinearly to the solution.

Chapter 6 presents and studies an algorithm that uses exact second derivatives in the
construction of the QP subproblem. Again, the search direction is obtained from the infor-
mation at a stationary point of the quadratic subproblem. It is shown that the algorithm
is globally convergent, and that it converges quadratically to the solution, under mild as-
sumptions.

Chapter 7 presents numerical results obtained trom the implementation of the algorithm
introduced in Chapter 1. Finally, some remarks are included concerning the properties of

all the previous algorithms.




Chapter 2

The Algorithm

Chapters 1, 5 and 6 present and study the convergence properties of three variants of an
SQP algorithm. These methods differ in the way the second-order information for the
QP subproblem (the matrix Hj defined in the previous chapter) is generated, but they
share several common features: the merit function is the same, the search direction is
generated according to similar principles and the linesearch procedure is analogous for the
three methods.

This chapter describes a framework algorithm, composed of the common features men-
tioned earlier. Consequently, the following chapters only need to specify details that differ-
entiate the method presented from the others.

In addition. we enumerate the general assumptions that are needed in the convergence
proofs for the different methods. Again, it is left to the corresponding chapters to complete
the list with any additional assumptions required for each individual method presented.
Finally, as the framework algorithm specifies conditions on the way the search direction is
to be computed, and on the acceptable forms that the Lagrange multiplier estimates may

take, this chapter ends with a justification for the reasonableness of these conditions.

2.1. Background

The basis for the algorithms presented in this report is the algorithm NPSQP, as imple-
mented in the code NPSOIL [GMSW86a] developed at the Systems Optimization Labora-

tory, Stanford University. For a theoretical discussion of some properties of this algorithm,

12
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[GMSWRGD] should be consulted; in fact, this reference has been the main source of infor-
mation for the work described in the following chapters.

Since its inception, NPSOL has been shown to be a very efficient code for the solution of
small general nonlinear problems. It provides a good starting point to propose and analyze
modifications to SQP algorithms to make them suitable for the solution of large nonlinear
problems.

One characteristic of NPSQP that poses difficulties in the solution of large problems is
the need to compute the minimizer for the quadratic subproblem. The number of iterations
required to solve the QP subproblem will in general grow with the size of the problem.
This increase in QP iterations raises two issues: in the first place. it is questionable that in
order to preserve overall efficiency. the effort required to compute a minimizer for the QP
subproblem can be compensated by a sufficiently small number of subproblems to be solved.
Also. any practical QP algorithm has to impose a limit on the maximum number of QP
iterations allowed, and so there will exist cases in which the exact solution is not obtained;
the question then is how does this affect the convergence properties of the algorithm. Both
issues can be addressed if we are able to obtain a satisfactory termination criterion for a QP
algorithm that is guaranteed to be achieved in a “moderate™ number of iterations. In this
sense, a “satisfactory™ criterion will be one that is efficient in the sense that the number of
nonlinear iterations is not adversely affected.

If the solution process is terminated early, the search direction for the outer iteration (the
step on the original variables) is defined as the “total™ step taken in the QP subproblem
up to that point. The characteristics of the point at which the termination takes place
clearly depend on the specific strategy nused to solve the QP subproblem. NPSQP, aud
the algorithms described later on, use an active-set strategy to obtain the solution starting
from a feasible point; this strategy dictates the kind of termination conditions that can be
imposed. As mentioned carlier. the conditions imposed should have the following properties:
they should limit the number of QP iterations needed to obtain the search direction to a
reasonably small value, and the conditions should be easy to implement.

Terminating the QP algorithm prior to obtaining a solution impacts the SQP algorithm
in a number of critical ways. Not only the search direction obtained is now of “lower quality™
than boore, bat also the QP multipliers available will in general not be positive, and it is
necessary Lo give some rules on what constitutes an acceptable multiplier estimate when

forming the scarch direction in the multiplier space. The consequences of terminating the
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QP solution early are therefore far reaching.

Another potential difficulty when large problems are considered is the use of a quasi-
Newton approximation to the full Hessian of the Lagrangian function, as it may become
too large to store in dense format, unless some scheme to generate sparse quasi-Newton
approximations is used.

One possible alternative, used for example in the code MINOS, as described in [MS82],
is to work with an approximation to the reduced Hessian. For many large-scale problems
the size of the reduced Hessian is relatively small, and an approximation to it may therefore
be stored in dense format.

Another alternative is to use exact second derivatives. In this case the sparsity of the
second derivarives should alleviate the problem of storing and handling the QP Hessian,
and even for the small-scale case, improvements in the rate of convergence and total com-
putational work can be expected.

Unfortunately. this latter approach presents some drawbacks. In the first place, sub-
problems may uo longer be convex, and an indefinite QP solver must be used. Also. a
unigue minimizer for the subproblem may not exist, and it is necessary to give conditions
nnder which a specific minimizer will be an acceptable search direction. On this regard.
1t shonld he noted that while the definition of a satisfactory termination criterion for the
quasi- Newrtan algorithms is only one aspect in the improvement of their efficiency, for the
Newtou-type aigorithim the termination criterion is directly related to its convergence prop-
erties.  Finallv, given that the convergence proofs rely heavily on the similariiy of the
convergence properties for the sequences {z, — 2*} and {pi}, if the reduced Hessian is close
to singnlarity it is possible that no minimizer will be acceptable, and alternative termination
criteria need to be specified.

The preceding topics are our main themes. The definition of the search direction will
he introduced in this chapter, after the general form of the algorithm, to he completed in
following cliapters, has been speciiied. The approximation to the second-derivative infor-
mation used by cach algorithm will be indicated in the corresponding chapters. The next

sections tryv ta pravide the framework for all subsequent results.

2.2.  General form of the algorithm

This section introduces the prototype algorithm. Following the remarks made in the pre-

vious section, this algorithm is directly based on NPSQP. The prototype algorithm obtains
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the search divection from an incomplete solution for a QP subproblem of the form indicated
- the previous chapter. The iterates are determined by performing a linesearch on the

following mernt function:

Lw Aospy= Flo) - A"'(ru’ - ) + %p((‘(l‘) - .~;>'l.<(‘(r) - .s') (2.2.1)

where ~ > 0 are slack variables, and the scalar p is known as the penalty parameter. The
linesearch s performed in the space of the variables r. A and s, and the corresponding
search directions are denoted by p, £ and ¢.

The svimbols ofa. p). or sometimes just o(a). are used to denote
olap) = Lo+ ap A+ alls+ agop).

that is. the et funetion as a function of the steplength. The derivative of o with respect
1o o is denoted by o)

The following conventions will be used in the rest of the report.

il

i = V’['v(.l‘k), l;\ V('(.l‘k). L= (‘(J‘k).

although the list two svmbols. Ay and ep. will alse be used with the same meaning but
restricted to the set of active constraints at the given point. The term active constraint will
he used to designate a constraint that is satisfied exactly at the current point (e,(r) = 0
i the nonlinear problem. or /p = —¢, in the quadratic subproblem), and the set of all
constraints active at a given point will be referred to as the active set at the point.

The objective function for the QP subproblem will be dennted by v (p).
i = T AT 1T
ve(p) = NV F(e) p+ 5p" Hep.

Sometimes, ¢ will denote the function of one variable vr(a) = vi(p + ad). Finally, sym-
hols of the forn d,,. indicate fixed scalars related to properties of the problem. or the

nnplementation of the algorithm, where “abe™ identifies the specifie scalar represented.

The framework algorithm

The algorithin described below will be common to the method:. studied ‘n the following
chapters.in the sense that the latter witl be defined as specific algorithms that lie within

this framework algorithay, The framework algorithm proceeds through the following steps:
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(1} Start from 4 point ry and an estimate for the Lagrange multipliers . Let H be

an approximation to the Hessian of the Lagrangian function at zy, satisfying certain

propertios, and let py >0 be the initial value for the penalty parameter.

(i At each pont oyl form the QP subproblem

(i)

(1v)

minimize ngp + %pTHkp
pER"
subject to  Axp > —ck,

where /1y denotes an approximation to the Hessian of the Lagrangian function at
s and obtain an incomplete solution py satisfying certain conditions to be specified
later. Compute a vector of multipliers gy satisfying a second set of conditions to be

specified. I pe = 00set A = e and terminate. Otherwise, define £ = px — Ag.

Compute s from

max (0,¢,) if pr_y =0,

Ak )
mnx(().rk, - —L) otherwise.
: Ph—1

Find py such that o(0) (or "(0) if a curvilinear search is used) is bounded away from
zero by some Jlixed multiple of [|pi|*.
Compute g from

qr = Aipr + o — si. (2.2.2)
Compnte the steplength g as follows. If pg is used as a direction of descent, the
termination conditions for the linesearch are as follows:
If

ofl) = ¢(0) < 00'(0) (2.2.3)

set ap = 1o Otherwise, find an o € (0,1) such that

o) — &0) < g (0) (2.2.1a)
&) > no’(0), (2.2.1b)

where 0 < 0 <y < %

If 1, is indefinite, a curvilinear search may have to be used. The definition of ¢ will

be slightly modified, and the new termination conditions are given in Chapter 6.
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(v) Form 4.

{vi) Update oy and A using

Thiy Ty Pk
Akgr = A | o] &
Sk Sk Yk

and repeat the previous steps until convergence is reached.

This description of the algorithm still feaves many details to be specified. The termi-
nation criteria for the incomplete solution of the QP subproblem and tiie conditions on
the multiplier approximation pi are discussed below. The specification of the form of the
approximation to the Hessian of the Lagrangian function, Hy, is left to the correspond-
ing chapters. Finally, for the case when indefinite Hessian matrices are used in the QP

subproblem, the form of the modified scarch is given in Chapter 6.

The solution of the QP subproblem

As indicated in step (ii) of the algorithm, in each iteration the search direction is com-
puted as the incomplete solution for the local quadratic programming approximation to the
problem, by moving to a stationary point of the QP subproblem and using the information
available at that point in the way indicated below. The subscript & corresponding to the

iteration number will be dropped in what follows.

(i) An initial feasible point py for the QP subproblem is obtained.

When an incomplete solution for the QP subproblem is used to define the search
direction, the choice of pg becomes critical. If Ify is positive definite and the minimizer
for the QP is used to determine the search direction, then, given the uniqueness of py.
the choice of py is irrelevant. If we determine the search directica from a stationary
point that is not a minimizer, the sequence of stationary points that we compute
depends directly on the value of pyg. We wish to define the initial point in such a manner
that, at least in the positive definite case, all stationary points are satisfactory points
at which to terminate the solution process. The condition that we need to impose on
Po is one that Jimits the size of its nerm, and in particular ||py]] will be required to be

small whenever the points ry are close to r”,
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(i)

{iii)

We start by defining vectors & and r having components

& = max(0,¢; — ui),
N ci — sy ifle; — 8| < ey = &l
1 = .

¢; — §, otherwise;

where y denotes a multiplier estimate such that the following property holds:
llzx = || = 0 = {lex — &l — 0O

when & is a stationary point for the NLP problem. From this definition, r has the
tollowiug property:
irll < lle - sl (2.2.5)

The initial point py should then satisfy:

o If ¢ denotes the components of ¢ corresponding to the active constraints at po;
for some constant 3,, > 0,
lipoll < Boclléll (2.2.6)

¢ For some constant G, > 0,
lipoll < Bpesllr]) (2.2.7)

It is shown later that these conditions are casily satisfied, given a reasonablec rule for
the selection of the initial QP active set. A stronger condition, but perhaps of a more
intuitive nature, would be to select ||po]| < Bemllc™ ||, where ¢~ denotes the vector of
negative components of ¢ (the norm of the infeasibilities at the current point). 1n this
case, we wounld be requiring ||pol| to be <mall whenever we are close to a feasible point
{and not necessarily just close to a stationary point). Its disadvantage is that near a
solution this rule could prevent the algorithm from having some desirable properties

(such as having one QP iteration per major iteration, for example).

A sequence of Newton steps is taken until a stationary point for the QP subproblem,

p.is found.

If the stationary point is a second-order KKT point, the search direction is defined as

P =D
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{iv} If the stationary point is not a second-order KKT point, either the QP multiplier
Y 1 I

vector has some components that are negative, or the reduced Hessian (assuming

that exact second derivatives are used) has negative eigenvalues. In this case. an

additional step. p + ad. may need to be taken, where « and d should satisfy the

conditions indicated below.

If the multiplier vector has negative elements, the conditions on the step are:

C1.

C2.

C3.

d is feasible with respect to the active constraints. Ad > G, and its norm is
bounded above and below. that is. for some constants 3,4 > Jmq > 0 it holds
that 0 2 |dl| 2 Fa- Tt is assumea that Jp,0 < 1. in order to simplify the
arguments in the followine chapters.
The rate of de<cent along d is sufficiently large. If ©(¢) = «(p+(d). it is required
that

Oy = (Hp+ ¢g)ld < —Fqgemax, (2.2.8)

for some constant Jy,. > 0.

The steplength ais defined as the step to the minimizer of the quadratic function
C(C), given by —u’(0)/(dTHd), if v is convex and this step is feasible. Let a.

denote the step to the nearest inactive constraint. and define

v’(0) T
—— if d'Hd > 0,
am =4 “dtia N (2.2.9)
[ otherwise.
Then
a = min{ Qe Oy iy ). (2.2.10)

where a,, > 0 is a specified bound on the largest acceptable step.

If the multiplier vector is non-negative and the reduced Hessian is indefinite, the

conditions are:

C4.

Adirection of negative curvature d for the reduced Hessian is computed satisfviug
Nl =1, d'Hd < 3 Ay, Ad=0. gld <0,

where Ayin indicates the smallest eigenvalue for the reduced Hessian, and A

denotes the Jacobian corresponding 1o the active set at p.
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{:\ weaker condition that is sufficient for the convergence of these algorithms is
that for any sequence {di}.

dTH,d,

—0=>2A ine, — 0
dTd, ik

holds.)

C5. Let o be the step to the nearest constraint. The step a is defined as
a = min(ae,0p).
Finally, for both cases we impose the following condition:

C6. It is a desirable property to avoid having search directions with very small norms,
unless the corresponding point is close to a solution. The following condition is
sufficient to ensure this property. Define

J d if 1P sipl| P iR
b= pt+a if 18Il < BaipllP + ad]| (2.2.11)

P otherwise, ‘

for some constant 34, > 0. In what follows it will be required that 3y, > 1.

It should be noted that in the case when Hj is obtained from the exact second deriva-
tives, the previous rules are not sufficient for the determination of the search direction; the

complete set of rules will be presented in Chapter 6.

The multiplier estimates

Step (ii) of the algorithm requires not only a search direction p,, but also an estimate
jty for the Lagrange multipliers at the current point. The QP solution is terminated at a
stationary point. so a natural choice would be to use the QP multipliers as the estimate,
but in general these may not be the best possible choice, as they may be negative, or the
active set associated with the search direction may not in some cases be the same as the
one for which the multiplier was obtained. The following set of conditions on g is suflicient

to ensure that the algorithms have the desired convergence properties.

C7. The estimates are uniformly bounded in norm.
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Cs.
Nw = X% = O(lipell),

where A* denotes the multiplier vector associated with the solution point closest to

I

Cg. The complementarity condition pH Agpy + ¢p) = 0 is saticfied at all iterations.

2.3. Assumptions and bounds
The algorithm will be applied to a problem satisfying the following general assumptions:

A1l. z; lies in a closed, bounded region  C ", for all k.

A2. F, ¢; and their first and second derivatives are continuous and uniformly bounded in

norm on 2.

A 3. The Jacobian corresponding to the active constraints at any limit point of the sequence

generated by the algorithm has full rank.

A4. The quadratic subproblems are always feasible; furthermore, there exists a subset
of linearly independent constraints corresponding to the violated constraints for the
NLP problem. such that its condition number is bounded and its least-norm solution

is feasible.
A5. Strict complementarity holds at all stationary points for the nonlinear program in 2.

A6. The reduced Hessian is non-singular at all solution points for the problem.

The bounds

From the previous assumptions, several quantities are uniformly bounded in the algorithm.
We introduce the notation that will be used throughout the following chapters for some of
these bounds. The first three bounds follow from assumption A2; the fourth follows from

A3.

Onma is a bound for the norm of the Jacobian: ||Ak|] < Brma-

Bnme is a bound for the norm of the constraint vector: |ek|| < Bame.
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3umg 15 a bound for the norm of the gradient: ||gi|j < Brmg-

Fnmu is an upper bound for the norm of the muitipliers corresponding to a minimizer for
the QP subproblem: ||| < Bnmau.

2.4. Auxiliary results

This section presents a certain number of basic results, either justifying the conditions

introduced before, or establishing properties to be used in the following chapters.

Initial points for the QP subproblem

It is of interest to show that the condition on step (i) for the solution of the QP subproblem
can be satisfied. In fact, the role of assumption A4 is to guarantee that this condition can
be achieved. Condition (2.2.6) is satisfied if the Jacobians for the initial active sets have
bounded condition numbers. Condition (2.2.7) requires some additional justification.
From A4 it follows that there exist feasible points for the QP subproblem satisfying the

condition

llpoll < Bem llc™ 1,

for some positive constant G..,.
Consider now the following relationship, which will be often used in the next chapters.
For any vector v defined as v; = min(¢;, w;), where w is any other vector, it holds that

le= < lfel]. since

if ¢ =0 then ¢; <vil,
if ¢ >0 then if wv;=c¢ then ¢ =]|vl,
if vi=w; then ¢ <|w=|vl.
This implies
lemlf < fle—=sll, eIl < fle - 3
and
fle™ll < el < fle = sll. (2.4.1)




.
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Multiplier estimates

The next results explore some implications of the conditions on the multipliers given in the
previous sections, and also present some examples of estimates satisfying these conditions.
A consequence of condition C7 and the form in which multipliers are updated is the

boundedness of the multipliers in the algorithm. This result is Lemma 4.2 in [GMSW86b].
Lemma 2.4.1. For allk > 1,
< .
Akl < o 2K sl
and hence |{[A¢|| ts bounded for all k.

Proof. By definition,

Ao = Ho
A+ op(pe — Ak), k2> 1. (2.4.2)

Ak+1

The proof is by induction. The result holds for Ag = o because of the boundedness of
the multiplier estimate (condition C7). Assume that the lemma holds for Ax. From the

definition of A4, and norm inequalities, we have
Akl € cklliill + (1 = o)l Al
Since 0 < a < 1, the inductive hypothesis gives
< .
Akl < OTS“;*SX,‘HMIL

as required. @

Conditions C7-C9 are sufficiently general to be satisfied by most reasonable estimates,
as the next lemmas show. Nonetheless, some attention must be paid to the satisfaction of
condition CT7, concerning the boundedness of the estimate, although that boundedness is
guaranteed asymptotically by assumption A3. In general, any reascnable scheme to limit
the norm of the multiplier estimate will not affect condition C8.

An issue that needs to be mentioned regarding condition C8 is the necessity to identify
the correct active set when zx is close enough to z* (Since the problem may have several

solution points, we use z* in this context to denote the solution closest to z;.) The next
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results assume that this is the case, but the formal proof for this property is given in
Chapters 4. 5 and 6, where it will be shown that, independently of C8, if ||zx — z*|| is small
cnough the correct active set must have been identified. Note that if ||zx ~ z*|| is bounded
away from zero, C8 will be satisfied automatically by any multiplier estimate.

The following candidates for the estimate will be shown to satisfy C8-C9, assuming

that the correct active set has been identified.
(1) The QP multipliers at stationary points found by the algorithin.
(it) The least-squares multipliers at .

{ii1) The least-squares multipliers at zx + py.

For the following results, let {z;} denote a convergent sequence such that z; — z* a
stationary point for problem NLP with multiplier vector A*. Also, we assume that ||H,]| is

bounded. and that
Ipell = O(llzx ~ 2*|)).

In Chapters 1.5 and 6 it will be shown that this {ast result holds for the points obtained

by the algorithms considered there.

Lemma 2.4.2. Let ji; denote the QP multipliers at a stationary point py of the QP sub-
problen at oy, having the same set of active constraints as *. If ||px|| = O(||zx — 2*|]),
then

liix = AJl = O(l|lzx - 2*|)).

Proof. From the definition of jiy,
Al = Hipre + g,
and from the corresponding Taylor series expansion,
Abjie = AT = i, Viei(zi)(@® = zi) + O(J|zi ~ 2*|]).
From the definition of A* and the previous equation,

AT = ) = gi - ¢° + Hepe + S e Viezi)(z* — zi) + O(l|zk — 2°)|?).
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and again using a Taylor series expansion for gy,
AT g = A') = Wi(zx ~ 2°) + Hipie + O(J|zx — =*||?)

where W} denotes the Hessian of the Lagrangian function at zy, defined using fi; as the
Lagrange multiplier estimate.

From assumptions A2 and A3 and the boundedness of H; the desired result follows.

The following lemma presents the corresponding results for the least-squares multiplier

estimates, .
Lemma 2.4.3. The least-squares multipliers at z;. satisfy
ik = X*|l = O(lzx ~ =*1))
and assuming ||vy, + px — 2*|| = o(||zx — 2*||), the least-squares multipliers at i + px satisfy

ik = X)) = o(Jlzx = 2*|1).

Proof. From AkA{;Lk = Argk, A = ¢g* and A, = A* + O(||lzx — z*|}) it follows that
ATy - W) = A%(ge - ¢°) + 0|2k — 2")) = Ollzx — =),

and from the non-singularity of A*¥A*T we get

e = X = O(||zx - 2*|))-

For the second case, under the same assumptions as before, if we denote by A},g; the

corresponding values obtained at x4 + p, using A, = A* + O(||zx + px — £*||) we have
ATA (i~ W) = AMgk - ¢°) + Olzk + P — 2*|)) = Ollzk + i — ")),
and fron' the assumptions,
uo = X = O(llzx + pi = *|1) = olllze — "),

completing the proof. 1




Chapter 3

General Results

The previous chapter has introduced a framework algorithm to be used in the definition
of the three tucthods analyzed in the following chapters. The study of these algorithms
centers on the determination of their convergence properties, that is, the proof that they
are globally convergent, and the characterization of their asymptotic rates of convergence.

Given the many common features of the different algorithms, the arguments used to
show these results naturally follow the same general pattern and present a considerable
number of similar steps. This chapter introduces the general structure shared by the proofs
developed in the following chapters, and proves those results that apply to all algorithms,
because they are independent of the way Hy is defined, the specific details in the determi-
nation of the search direction, etc. In this way, the actual convergence proofs given in the
next three chapters only need to establish those results that depend on the specific details
characterizing cach one of the algorithms, and will make use of the general results in this
chapter for those aspects that they have in common.

The lemmas presented in the following sections leave many unjustified steps in the
argument of the proofs, corresponding to those results that are particular to each algorithm.
These steps are stated as properties, denoted by Px, where “x” is a digit, and they are
assumed to hold for subsequent lemmas. The convergence proofs in Chapters 4, 5 and 6
prove that these properties hold for the different algorithms. For ease of reference, at the

end of the chapter we include a list of all the properties introduced.

26
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3.1. Convergence properties

This section motivates the common structure shared by the convergence proofs in the fol-
lowing chapters, by presenting the questions these proofs will address. It is important to
remember that the results presented in this chapter do not try to answer the questions
posed below: they only introduce a number of basic results, to be used in Chapters 4, 5 and
6 to answer these questions.

All of our algorithms generate an infinite sequence {zx}72, whose limit point is a solution
for the problem. In order to establish global convergence (i.e., independently of the initial
point selected, the algorithm finds a solution for the problem), we want to show that the limit
point of the sequence has certain desired properties. Notice that under assumption Al, the
sequence will always have convergent subsequences. Furthermore, from assumptions A3 and
AB it is possible to show that the limit point is in fact unique. Proving global convergence
is then equivalent to proving that the limit point is a solution point. In what follows, we
denote the limit point by r¥* so that we have r; — 2*. The proofs in Chapters -1, 5 and 6
will start by examining the properties of z*.

In subsequent chapters we will also determine the rate of convergence of the sequence

{llxx — z*||}. Specifically, we will provide answers to *he following questions:

e What is the value of N
lim zegm = 27| _*I I
koo ||z — 2%

when both n =1 and m =17

o If the previous answer is zero, is there a value of n with m = 1 for which the answer

is finite and strictly positive?

o If the answer to the first question is not zero, is there a value of m with n = 1 for

which the answer is zero?

To characterize the different answers to the previous questions, we say that
(i) the algorithm converges superlincarly (or one-step superlinearly) if

X
fim Jzae L,
A e = 2
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(1) the algoritiun converges tiwo-step superlinearly if

I|ohs2 ~ I*” _

S FrE

chapter we introduce some conditions that guarantee this property.

3.2. Structure of the proofs

lim =0
k—nc H-Tk - .l'*”
(i) finally, the algorithm converges quadratically if
*
Tey1 — L
0 < lim bf—l——-“- < 26,

A further question of interest is how the penalty parameter pg behaves as b — oc. A

desirable property for pg is that it remain bounded throughout the algorithm, and in this

In this section we present and motivate the steps that we will take to obtain the answers

to the previous questions. These steps also attempt to justifv the results proved in this

chapter, so that they can more easily be put into the framework of the convergence proofs

presented in Chapters 1, 5 and 6. Some of the resufts will be shown to hold in Chapters 4,

5 and 6, while some others are proved in this chapter; we try to indicate for each one of the

statements where the corresponding proof can be found.

(i) A first observation is that the sequence {ry — 2%} is not easy to study, given that part

of the information is available at iteration k, but another part, ¥ is not known until

the end of the process. It will be seen that the sequence of search directions {pi} can

. . . . .. . * . C.
be studied in its place, and this sequence mimics the behavior of {rx — " }. This is

done here by proving that

O|pel}).

il

*
lrp — 27|

i

[P

O(|lry — o).

(i1) A first step in establishing these relationships is to show that the correct active set at

the solution is identified after a finite number of iterations. To be more precise, for

the different algorithms. and in the corresponding chapters, we prove that if {|pgl]] is

small euough, then the correct active set must have been identified.
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I'tie convergence of the sequence {pe} is proved using the bonndedness of the meris
function. 1o other words, the merit function decreases in ecach iteration, and the
decrease is related to the value of [[pell?. As the merit function is bounded below,
from asswptions Al and A2 and Lemma 2,010 this implies that lpe]] — 00 and
from the previous remarks global convergence follows. This fundamental result is

civen in the corresponding chapters for each of the different algorithins,

To establish the bound on the decrease in the value of the merit function. it is tiecessary
to start by <howing that the search direction is an acceptable descent divection for the
merit funetion. Again, and to be more precise. what we prove in Chapters 105 and 6

is that for positive constants 3 and 3,

glpe + Ipitipe < = Sfipl + Adirell
The descent available for the merit function in any iteration is dependent on the vahie
chosen for . This property is used to select a suitable value for the penalty parameter
i each iteration, Thisis different from the strategy used in many algorithms. in which
¢ is selected so that the Hessian of the augmented Lagrangian is positive definite at
the solution. All of our algorithms define p so that the directional derivative at the
heginning of the linesearch is sufficiently negative, that is, o) satisfies a condition of
the form

)
Ve

'5’24(/(” < ‘-ﬂ/“l’k[\

but at the sae time pois not large enough to prevent convergence. The particular
forme in which the penalty parameter is defined depends on the aleorithm considered,

and so s et to the corresponding chapters,

The Last requirement 1o ensnre elobal convergence is to prove that the steplength s
aniforidy bounded away from zero. The reason for this condition is that the descent
in the merit funetion is really bounded by Jlagpe]i?. and s in this chapter we establish

Hiat what eoes to zero is the norm of the search divection and ot the steplength.

A~ consequence of the global convergence of the algorithms and the conditions
nnposeal o thie estinates g the Lagrange multiplier estimates Ap also converge to

the cortect valne,
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iviitt Coneerning the rate of convergence, the significant remark is that in general the
questions raised earlier have known answers for the sequence {ry + pr — ¥}, The
proots iven in the following chapters have two parts; in vne we show that eventually
a unit steplength is always accepted, and so the previous sequence is the relevant
otie for this question, and in the other we establish the corresponding results for this

seqgletice,

v A final fssue s the study of conditions under which the penalty parameter remains
bonnded throughout the algorithm. Using the previous results, we introduce at the

eud ol the ehiapter some conditions that imply this property.

Fhie next sections present results that are common to the proofs for all three methods,

alone the tines iadicated above,

3.3. Properties of the search direction

Phe fiest group of results explores the relationship of stationary points for the QP subprob-
letns and ~tationary points for problem NLP. The significatice of this relationship is due
to the fact that the search direction is obtained from information available at a stationary
point of the QP subproblem. The results shown below are similar in spirit to those in
Robinson (Rob7 1l They will be used in subsequent chapters to show that the value of ||py|
v sl T i and only if we are close 1o a solution point. with corresponding implications

reearding the identification of the correct active set.

Lemma 3.3.1. For any o € Q. et p be a stationary point for the QP subproblem at r.
Then

Ves0 36>0 3003 fpll<e= e - i <

where o s a slationary point for the nonlincar program NLP, with the same sct of active
constiainis as pooor g is a feasible point where the Jacobian of the active constraints is

~inqgular,

Proof. A--ume that the result does not hold: then there exist sequences {pe}S - and

Loy dyoyosnddotat pyis astationary point for the Qi” subproblem at ayg satisfying pe]f — 0.

and a0l s for some o s Oand sll rowith the previous properties.
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A convergent subsequence can be extracted from {z,}, using the compactness of (2.
Select now a sub-subsequence having fixed active set, a subset of the active set at the limit
point Ir.

If we take limits in

Akpe+ e, 20

and apply assumption A2, it immediately follows that £ must be feasible.

If the set of active coustraints is non-singular at #. from
T
Hipe + gr = Agiti

there will exist a subsequence along which {yu;} converges, px — ji. Taking limits along
this subsequence,

g= /iT[t.
This result implies that £ is a stationary point for the noulinear problem, contradicting the
assunmption.

To show that the set of active constraints should be the same for p and Z, in the case
when the Jacobian at I is non-singular, assume that sequences as described above exist, but
that the set of active constraints at each py is not the same as the set of active constraints
at . As ||pi|| — 0, the set of active constraints at each p; must be a subset of the active
constraints at & but if it is a proper subset, then there must exist an index i, active at
I, such that gy, = 0 for large enough k, and this will imply f; = 0, violating the strict
complementarity assumption. i

The assumptions on the form of the problem guarantee that large enough steps can be
taken from stationary points in the QP subproblems when the points considered are not
close to solutions for the problem. The algorithm makes use of this property to move away
from stationary points for NLP. The next result establishes the existence of some of the

necessary bounds.

Lemma 3.3.2. Therc erist positive values Bspe, Bspm, Bspn, such that for all stationary
pownts r,

m]" Ei > ﬁspc;
1:6,>0

for those stationary points having some negative multiplier clement,

max i > Bspm;
1
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and for those stationary points that have a non-negative multiplier vector, but are not sccond-
order KKT points,

mflx AT > Bypn,

where A denotes the ith eigenvalue for the reduced Hessian at i.

Proof. Assume that there exists a sequence {74} of stationary points for problem NLP in
€ such that

min ¢, — 0.
i:ékl>0

From the compactness of 2, a convergent subsequence can be extracted having fixed
active set. and such that the minimum is always achieved for the same constraint (or set
of constraints). Let #* denote the limit point, which will also be a stationary point for
the problem (or will have a singular Jacobian for the active constraints, except we exclude
this case by invoking assumption A3). At ¥ assumption A5 will be violated, as the
corresponding coustraints are active but have zero multipliers.

If the sequence is such that

max iy, — 0
using the same construction, assumption A5 will again be violated at ¥, since at least one
of the multipliers corresponding to an active constraint will be zero.

Finally. if

max ’\L—. -0
for 4 sequence of first-order KKT points, the limit point will be a second-order KKT point
but assumption A6 will be violated, as the reduced Hessian will be singular. §

Using the previous lemmas, in Chapters 4, 5 and 6 we establish the following property

for the different algorithms:

P1. There exists a value ¢ > 0 such that if ||pi|] < €, then the correct active set at
a solution of problem NLP has been identified, and pi is a minimizer for the QP

subproblen.

In what follows, we assmine that this property holds.
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3.4. Equivalence of sequences

For a given sequence {ag}. the next results establish the equivalence between the sequences
¢ * . : :
{oe =7} and {p}. allowing us to conunue the study of the conveigence pioperties for the

algorithms on the sequence of search directions.

Lemma 3.4.1. If ¥ denotes the solution point closest to xy, then there exists a constant

M, independent of k. such that

lx — =¥ < M, llpell- {3.1.1)

Proof. The proof is in essence the one for Lemma 1.1 in [GMSWS6b], and takes the
following form. Let ¢ denote the vector of constraints active at 2, let A be the Jacobian of

the active constraints, and Z an orthogonal basis for the null space of A. Define

c(x)

hir) = .
Z(z)Tg(x)

Expanding /i,(.r) about «*, and noting that h(r*) = 0, we obtain
hi(z) = Hi(8:)(z — x¥),

for H,(8;) = Vh(2* +8;(x — £*)), where 0 < 8; < 1 (see Goodman [GoS85], for a discussion

of the definitiou of /;). Define S5 as the matrix whose rows are given by [1;(8;). Then

c(z)

= Sp(x — z%). 3.4.2
Z(2)Tg(2) ol — 1) ( )

Assume that ||pi]| < ¢ for suitably small €, so that property P1 applies and the smallest
singular value of the reduced Hessian of the Lagrangian function is bounded below. From
assumption AS. 5 1s nousingular, with smallest singular value uniformly bounded below
{see. e.g.. Robiuson [Rob74]). Because of assumption A1, the relation (3.1.1) is immediate
if {|pifl > €. and we henceforth consider only iterations k such that ||pi]| < €.

Taking r = ry in (3.4.2). and using the nonsingularity of Sy and nor inequalities. we
obtain

Nk = % < Slerl] + 1121 g,1D (3.13)
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for some bounded 3. We now seek an upper bound on the right-hand side of this equation.
Since the solution for the QP subproblem identifies the correct active set, pi satisfies the
equations

Aepe = —cx and  ZFH,p, = -2y,

From these equations, assumption A3 and the positive definiteness of the reduced Hessian,

it follows that there must exist a constant B > 0 such that

3lexll + 11256l < llpwll- (3.4.4)

Since 3 and J are independent of k, combining (3.4.3) and (3.1.4) gives the desired result.
1

The converse statement is proved in the next lemma. This result is not strictly necessary
for the convergence proof, but it is included for completeness, and because it simplifies
certain arguments. [t also requires certain additional assumptions, whose validity will be
established in the following chapters. In particular, if Z; denotes a basis for the null space
of the Jacobian at ry corresponding to the constraints active at z* (defined in the same
way as before), then the sequence {Z{Ilka} must be bounded, and any limit point, say

Z*TH*Z* must be positive definite.

Lemnma 3.4.2. Let 2* denote the solution point closest to . If any limit of the sequence

{ZFH,.Z,} is positive definite, then there exists a constant M. independent of k, such that

Ipall < Mok - 2*))-

Proof. We start by showing that whenever ||z — z*|| — 0, we must also have ||pi|| — 0.
Assume that that is not the case. Then there exists a sequence {pi} obtained from QP
subproblems at points {x;} satisfying z4 — z*, and such that ||pk}] > € for all k and some
¢ > 1.
Also, there wust exist a first QP step di along the way to py, satisfying ||di]| > €, where
¢ > 0 and all previons steps converge to zero. Define
ot
T
so that &g is a feasible QP step. Extract a subsequence along which both Z{I[kZ/\. and é;
have a limit. Then, if pi denotes the step taken in the QP subproblem immediately before
obtaining dy.,

(Hipr + gi)Tdy < 0,
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and taking limits we obtain

T8 <0 = NTA* <o,
but from strict complementarity and feasibility it must hold that 8% = 0. Again, taking
limits in

Yr(Pr) — Ve(pe +di) > 0
we must have

ST 02 < 0,

contradicting the assumption that Z¥*TH*Z* is positive definite, so p* = 0.

This result implies that there exists a & > 0 such that for all § < é,
ok =2l < 6 = [|pel) < €

where €' is the value in property P1, p; is obtained as the solution of the QP subproblem
and the correct active set has been identified.
If ||lo — 2™|| > 6. the result follows trivially. Assume that ||rx — z¥|| < 6. Then, as in

the proof for Lemma 3.4.1, from (3.4.2) and the boundedness of Sy we get
lze = 2% > 3'(llexll + 112{gxl])- (3.4.5)

Also, from the nonsingularity of A* and ZTH Z, for large k, for small enough ||z) — *||

we have, given that pg is obtained as a minimizer of the QP subproblem,
F'Ulexll + 1 Z4gill) 2 (pxll- (3.4.6)

Combining (3.4.5) and (3.4.6) gives the desired result. §

The previous lemmas justify replacing the study of the sequence of distances to the
solution set by the sequence of search directions. A result that is closely associated to the
last two lemas, and that completes the justification for the study of the sequence {p;}, is
given by the following property that, as in the previous case, will be assumed to hold for

the rest of the chapter, and is proved in the following chapters.
P2. ||pi]| = 0if and only if 2 is a solution for problem NLP.

It should be remembered from the remarks in Chapter 1 that the meaning of a solution
for problem NLP depends on the algorithm used, but in any case it is either a first-order
or a second-order KK'T point.

It was mentioned before that under assumption A6 the sequence generated by the

algorithm has a unique limit point. The next lemma proves this result.
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Lemma 3.4.3. If ||px]l — 0 and z44, is obtained as r;4) = T4 + axpr, 0 < o < 1, then

the sequence {ry} has a limit =¥, a solution point for the problem.

Proof. From assumption A1 and Lemma 3.4.1, it holds that any limit point for the se-
quence is a solution point. If there exists a unique limit point for the sequence, the proof is
complete. Assume then that there exists more than one limit point.

From

lzk+1 — zil) = allpk]l — O

it follows that the limit points cannot be isolated. To prove this, assume that we do have
isolated solutions. and in particular that there exists a limit point z* and a positive value
¢ such that for any other limit point Z we have ||z* — z|| > .

Let {ry,} denote a subsequence converging to z*, and such that {zx 41} is convergent,

but its limit point 7 is different from z*. Select i large enough to have

\ * € _ € €
e —a || £ =, Tk -z|| £ -, T, — Tk < -.
e e i 2k, = 2kl < 5
We can then write
| * = * _ * _ Je
ek, = vl 2 127 = 2l = llze, = 27l = flzn - 2l = Iz — 2l < &

but this contradicts the previous assumption.
If limit points are not isolated, sclect one of them, z*, and construct a sequence of limit
points {} converging to *. From the previous remarks. as all limit points must be solution

points,

F(z¢) = L(Z) = L(z¥) = F(£").

Notice that all solution points must have the same active set, from strict complementarity

and nonsingularity of the Jacobian at all limit points, implying that the terms Ac are zero

in all cases.

Define .
T~ 2
dy = ——=
lZx ~ 2*|l
and select a convergent subsequence having limit point d*. From the Taylor series expansion

for the active constraints,

cliy) = 0 = o(z*) + A%i|zx = %) + O(l|zr — 2*[%),
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which implies that for any active constraint 1,
_T _ * *T 1%
0= aikdk + O(”l‘k - H) = a; d =0,

and d* must be in the null space of the active constraints at z*.

For the Lagrangian function we can write
VL&) = VL") + VEL(") (2 — 2*) + o( |8k — 2*])).

Using the property that all points considered are solutions for the problem, and so their

Lagrangian functions have zero gradients,
0= V2L(z*)dy +o(1) = V2L(z*)d* =0,

but this contradicts assumption A6, and the sequence must have a unique limit point. B

Descent properties

As a consequence of Lemnma 3.4.1, to prove that the algorithm is globally convergent it is
enough to show that p; — 0. This result follows from the boundedness of the merit function,
and the fact that the merit function decreases by an amount bounded away from zero by
a multiple of ||p]|*® in each iteration. The first step along this line of reasoning will be to
establish that py satisfies certain descent properties. These properties can be considered to
be related to the well known condition for global convergence in unconstrained optimization,
that the angle between the gradient and the search direction must be bounded away from
orthogonality. The explicit form of the condition to be used is given (and assumed to hold)

in the next paragraph.

P3. There exist constants 3; > 0, g3 > 0 such that the incomplete solution for the QP

subproblem, py, satisfies

9lpe + 3pTH i < = Billpill? + Ballrel).

3.5. The penalty parameter

The penalty parameter in the algorithm is modified so that at cach iteration it is possihle
to decrease the value of the merit function by a sufficiently large amount. Chapters 4, 5
and 6 include proofs for the following property, and specific definitions for the value of the

penalty parameter ensuring that the desired decrease can be achieved.
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P4. There exists a value pg such that for some positive constant /3, independent of the
eration,

Sx(0.p) < =34 )lpk))?

for all p > py.

We will also assume that the sequence {p4} is nondecreasing.

In the case when the reduced Hessian is indefinite, a slightly different condition, also
proved in Cliapter 6. is used; in the modified condition (0, p) is replaced by ¢7(0,p). The
alterations that this change introduces in the results to follow will not be discussed here;
they are studied in detail in Chapter 6.

Whenever pis meuntioned in the results that follow, what is meant is not the actual value
of the penalty parameter, but rather the value of the bound p from condition P4. All the
resalts still hold if this value is replaced by a bounded multiple, p < K, for some K > |.
Also, we need to impose a condition on how often the value of the penalty parameter wiil
be updated. [t will be assumed that there exists a positive constant 3u > 3y such that no

update is performed whenever ¢ (0.p) < _?;Illll’k”2~

3.6. Boundedness of the steplength

The rest of the global convergence proof consists in showing that the steplength is bounded
away from zero. and so the poteatial decrease implied by the bound in P4 and (2.2.3) is
actually attained.

A first resudt. whose proof depends on the form of pg and 3, introduced in the following
chapters, where it will he justified, gives a first bound for the rate at which the penalty
parameter is allowed to increase in the algorithm. Tighter bounds will be introduced in

subsequent lemmas.
P5. For anv iteration &y in which the value of p is modified,
I < N
redipi <

and

Prller = sl <V

for <ome constant V.
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The notation &y is used in all that follows to indicate iterations at which the value of
the penalty parameter needs to be modified.

We now introduce an expression for ¢'(0) that will be used extensively in the proofs of
results related to the behavior of the merit function. To derive it, consider first the gradient

of L with respect to r, A and s,

glr) — Ax)Th + pA(l‘)T(('(I) - s)
VLa(rAs) = ~(etz) - 5) . (3.6.1)
A - p(c(.z:) - .s')

[t follows that o'(0) is given by

o'(0) = pTg - pT,-lT)\ + /1;17';17(0 -8}~ (c— s)Tf + ATy - qu(c - &)

il

P+ 2 = 0 e =) = plle = slf? (3.6.2)

where ¢, A, and ¢ are evaluated at a.

The following results, analogous to those in [GMSW&6b], complete the proof for the
boundedness of the steplength. These results start by proving the boundedness of certain
quantities. related to the penalty parameter, that appear in the termination conditions
for the linesearch; these results provide refined bounds for the rate at which the penalty
parameter may increase with respect to the ones given in property P5, once this pronerty
is assumed to hold. In all these results it must be remembered that there exist two cases
regarding the beliavior of the penalty parameter p. It may remain bounded throughout the
algorithm, in which case the results follow trivially, or it may neced to be increased in an

infinite number of iterations. This last case is the one addressed by the next lemmas.
Lemma 3.6.1. For all iterations k; at which the penalty parameter has to be modified,
T -~ - 2 . T,
Ci Hky < h Hpk(“ + (2’\k1 - ;uk() (e — Skl)’

where jig denotes the QP multipliers at py. and K is a positive constant.

Proof. In the proof we drop the subscript k. If ||p|| > ¢, the result follows from the
assumptions and the boundedness of the multiplier estimate. Otherwise, from P1 the
search direction must have been obtained as a solution for the QP subproblem, implyving
that

g'p+ plHp = —cTh (3.6.3)
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Also, if p~ denotes the value of the parameter before being modified,
&'(p7) > —Bullpll® (3.6.4)
and from the definition of ¢,
i< =pTHp + 3ullpl? + (c - aT@r =)~ p(c = 5)T(c - ).

From the non-negativity of p~(c¢ ~ s)7(¢ — s) and the boundedness of H the desired result

follows. @
Lemma 3.6.2. There exists a constant M such that for all I,

o1 (08, (p1) = Bry (1)) < M. (3.6.5)

Proof. To simplifv notation in this proof, we shall use the subscripts 0 and A" to denote
guantities associated with iterations & and k4, respectively. Thus, the penalty parameter
is increased at g and r, in order to satisfy condition P4, and remains fixed at py for
iterations 1...., LN -1

From the definition of o.
pu® = poF = poAT(e = s) + $pd(c — 8)T(c — ). (3.6.6)
Also. property P5 implies
pollco — soll < M and  pyllen — skl < M.

A

is gy . The desired relation {3.6.5) then follows if an upper bound exists for po(Fo — Fy).

Since [[A is bounded (Lemma 2.4.1), the only term in (3.6.6) that might become unbounded

('onsider iterations for which ||po|l < ¢, so that property P1 applies (for all other itera-
tions p is bounded, and the result holds from assumption A2). In this case, pp is obtained

as a solution for the QP subproblem. Let fig denote the QP multipliers corresponding to

-

Expanding F,. about ry, we have
Foo— by = _ T 19 PSTY 3.6.7)
IS o =({xy -T()) go + (”TU -Tl\” ). {3.6.7
Similarly, if we expand e, about ry. we obtain

1%). (3.6 %)

e = o+ Aolzn — 7o) + O]|zo — 21
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From Lemma 3011,

o — &5 < Mdipoll and (e, = 28 < Mlpx

and substituting the expression gy = .-&l'[,'ﬂu — Hopy and (3.6.8) in (3.6.7). we obtain

:))_

Fo—F, = (cp— (',\-)]}IU + (')<nmx(HpUH“’. Hpn

We thius seek to bound

potFo — F) = /)Uc('l)‘ﬂo - /70(',T\.ﬂg + /)U()(ma.\:( H[)UH‘)'. Hpw {‘))). (3.6.9)

To derive a bound for the first term on the right-hand side of (3.6.9). Lemma 3.6.1 can

be used to write

Pocerin < po W lpoll® + poley = s) (20 = 1iy)- (3.6.10)

[Ao]

2
Because pylleg = sgll« pollpoll®.

and {|geo]l are bounded. from (3.6.10) we conclude
that

pocirip < M. (3.6.11)

Consider now the second term on the right-hand side of (3.6.9). If ¢ denotes the

negative parts for all components of ¢, from jip > 0 we must have
T - -T - RPN
~ PoCrfo S Py il {3.6.12)

and from (2.1.1) we have
flerll < flew = skl

Using property P85 and the relation py < pye. we conchude that
T - g
= puci g < M. 13.6.13)

Finallv. consider the third rerm on the right-hand side of (3.6.9). Tt follows from property

P5 and the relation py < py that
pollpoll? < N and  polipellt < N

}Hl(i h"]l("‘

,;.,()(nmxﬂH)n.\‘,g.l\]),ﬁ‘,“')) < M. 13614
Combinine 13,601 (3.6.130 and (3.6.1-8). we obtain the bonnd
ool by = Froy < 3.

whicl tmplies the desired result, g
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Lenuna 3.6.3. Thore crists a constant M such that. for alll,

l\"+1—-1

i O llexpll® < M. (3.6.15)
k=ky

Proof. A: i the previous lemma, we use the subscripts 0 and A to denote quantities
associated with iterations k; and k4 respectively. For 0 < & < A" — 1. property (2.2.4a)

naposed by the choice of ag. and the fact that the penalty parameter is not increased. imply

that
We can nse the wdentity
KN-1
o0 = 0x = O (O = Okg1): (3.6.17)
k=0

tooether with equations (3.6.17). {3.6.16) and property P4 to obtain

K-1
%0"3;{ Z “k”Pk”z <oy — Op
k=0

Reurraneine 1his expression and using the property that 0 < a; < 1, we obtain

N-1
103, Y Mlewpell® < 00 = o (3.6.18)
k=0

The result follows by multiplving (3.6.1%) by pg and using Lemma 3.6.2. 1
Lemima 3.6.4. Theor erists a constant M such that, for all k.

()kH('k - .S‘kH S M. (‘()l‘”

Proof. '-ing the notation of the two previous lemmas, observe that (3.6.19) is immediate
from property PS5 for b= 0and k= K.

Fo verifyv a bound for b = 1., K — 1 (iterations at which the penalty parameter is
not increased ). we first consider vy, Let unbarred and barred quantities denote evaluation
at gy wnd g respectively,

If roo2 A /"/n,_ then

poler = s = 1A
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and the bound follows from Lemma 2.4.1.

If e, < A /pg. then s, = 0. If in addition ¢; > 0, then
polei = sil = poc < A,

and the same result applies.
Therefore. assume that ¢; < 0, ¢, < A;/po. and expand the ith constraint function
around rg:

¢ = ¢ + aoa,-Tp + O(|laopull®). {3.6.20)
Rewriting the previous expression, we obtain:
G=¢ -8 = (1 —ag)e + aolap+ ¢;) + O||avpoll®). (3.6.21)
Adding and subtracting (1 — ag)s; on the right-land side of (3.6.21) gives
¢, — s, = (1 —agle; — &)+ (1 —og)si + no(alTp +c,)+ ()(iluupnjlz). (3.6.22)
The properties of ag. s, and ap + ¢, imply that
(I —ag)si + aolsi + ¢:) 2 0.
and when ¢, < min((),/\,/pu), (3.6.22) gives the following inequality:

polé: = 8] < poll — ao)le; — s + paO(|leupol|* ). (3.6.23)

There are two cases to consider in analyzing (3.6.23). First, when ¢, > 0, or ¢; > A;/po.
the term ple, — s,| is bounded above. using the same arguments as befare. The second term
on the right-haud side of (3.6.23) is bounded above, using Lemima 3.6.3. Thus, the desired
bonnd

pO[(;l - 31' <M

follows if ¢, > min{0.A;/py). Extending this reasoning to the sequence b= 1...., N -1,
we see that the quantity pole,(rg) — si(xy)| is bounded whenever ¢, (i) > min(0. Ag, /ro).
or e (rk_y) Z min(0, Ax_y), /po)-

Consequentiy, the only remaining case involves components of ¢ that are negative and
have s, = ( at two or more consecutive iterations. Let ¢ denote the subvector of such
components of e. Using the componentwise inequality (3.6.23) and the fact that 0 < o < 1,
we have

I't)||(T(J‘1 ) = sl )H < /)()H‘:(IU) - 5(1'())“ + /’U”(H“nl’nﬂ:).
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It we proceed over the relevant sequence of iterations. the following inequality must hold
for b =1.....hN - 1
k-1
pollétri) = S(xe)ll < poll(zo) = &(zo)ll + poO (3 fleymlI?). (3.6.21)
=0
The result theu follows by applying property PS5 and Lemma 3.6.3 to (3.6.24). 1
The next 1wo lemmas establish the existence of a linesearch step bounded away {rom

zeroo independent of & and the size of p, for which a sufficient-decrease condition is satisfied.
Lemma 3.6.5. for ) <8< .
Or(8) < —0k(0) + V{pa]f”.

where N s a constant independent of k.

Proof. Wo iwain drop the subseript k. From (3.6.1),

T = T (A4 ples = s0)) VP 4 pAT —aT —paT

>

VoL = ~-A 0 I
-pA 1 pl
so that
o"(8) = p'W(B)p = Tip(eul8) - si(8))pTS e (B)p
+p(A®)p - q) T(A(a)p —q) = 26740 - q). (3.6.25)
where

W(8) = V2F(8) — (A + 06)Vci(6).

We now derive bounds on the first two terms on the right-hand side of (3.6.25). The
first term is bounded in magnitude by a constant multiple of ||p{|? because of assumption
A2 and the boundedness of Al (from Lemma 2.4.1). For the second term, we expand ¢,

i a Tavior series about o
el +8p)=clr)+ 9(1,(1)7}) + :]2-92])'].‘—"7(',(1' + 8.pp.
where U« # 7 H. Since s, (#) = s, + fq,, using (2.2.2) and multiplving by p, we have

/I(I A+ 8p)~ (s, + /)r/,)) =p(l - 0)((‘,(.)”) - .s',) + /’%927)Tv2":(1 + 8. p)p.
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We know f{rom Lemma 3.6.4 that ple;(z) — s, is bounded, and Lemma 3.6.3 implies that

pllap|l? is bounded. Therefore,
p|(ci8) - si(8)] < i, (3.6.26)

where J; is a constant independent of the iteration. Using (3.6.26), we obtain the overall
bound
S [p(cil6) = i) pTV 20 < Il (3.6.27)

where J is a constant independent of the iteration.
Now we examine the third term on the right-hand side of (3.6.25). Using Taylor series.

we have

a,(z + Hp)Tp = aiTp + 01)TV2ci(éi ). (3.6.28)
where 0 < #; < #. Using (2.2.2) and Lemmas 3.6.3 and 3.6.4, we obtain
T
p(A@)p - q) (AB)p = q) < plc = )(c~ o)+ Llpll, (3.6.29)

where L is a constant independent of the iteration.
From (3.6.28) and the boundedness of ||€]| (Lemma 2.4.1), the final term on the right-

hand side of {3.6.25) can be written as
—267(A(0)p — q) < 267(c = 5) + Mpl”, (3.6.30)

where M is a constant independent of the iteration.

We now observe that

ple=$)Tc—s)+26Tc—s) = =¢/(0) + pTg + pT(c - s)

i

~¢'(0)+ plg ~ ATw) = s,
and using Tavlor expansions we obtain
g = AT = pTe* = A7)+ o(Ipll®) = pTATOT = ) + OUIPIP)-
Condition C8 on the multipliers implies that there exists a constant M > 0 such that
pl(g = ATu) < M|pll>.

From jip — A% strict complementarity at the solution, and the fact that the correct active

set is identified for {|p|l small enough (property P1), we eventually have g > 0 and wle > 0.
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From (3.6.29). (3.6.30) and the last results, we have
T .
p (A0 = q) (40— q) - 26T(AOP - q) < -'(0) + M'pfi". (3.6.31)
Combining (3.6.27). (3.6.29) and (3.6.31) gives the required result. &

Lemma 3.6.6. The linescarch of the algorithm defines a step length « € (0,1] such that
dla) — o(0) < 0a'(0) (3.6.32)

and a > o, whare 0 < o < 1 and & > 0 is bounded away from zero and independent of the

itcration.

Proof. If condition (2.2.3) is satisfied at a given iteration, then @ = 1 and (3.6.32) holds
with a trivially bounded away from zero.

Assume that (2.2.3) does not hold (i.e., a is computed by safeguarded cubic interpola-
tion). The existence of a step length o that satisfies conditions (2.2.4) is guaranteed from
standard analysis (see, for example, Moré and Sorensen [MS81]). We need to show that a
is uniformly bounded away from zero. There are two cases to consider.

From the assumption that (2.2.3) does not hold, ¢(1) — ¢(0) > ¢¢(0). Since ¢'(0) < 0,

there must exist at least one positive zero of the function
Y(a) = ¢(a) — ¢(0) — oad'(0).

Let a* denote the smallest such zero. Since ¥ vanishes at zero and . and ¥(0) < 0. the
mean-value theorem implies the existence of a point @ (0 < & < o) such that (&) = 0,

i for which

Becanuse o < .0t follows that

(¢} = 1¢'(0) = (@ — 1)¢'(0) > 0.

Therefore, since the function ¢'(e) — ¢’ (0) is negative at o = 0 and non-negative at a. the

mean-value theorem again implies the existence of a smallest value & (0 < & < @) such that

&' (ar) = ¢/ (0). (3.6.33)
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The poiut a is the required lower bound on the step length because (3.6.33) tmplies that
(2.2.4b) will not be satisfied for any « € [0, a).
Expanding o' iu a Tavlor series gives
o'ta) = o'(0) + ao”(8),

where 0 < 6 < . Therefore, using (3.6.33) and noting that 5 < 1 and ¢’(0) < 0. we obtain

C_oa)=o0) o ]S(0) g
= UGy (3.6.31)

{Since a > U. 8 must be such that o”(#) > 0). We seek a lower bound on «, aud hience aa
upper bound on the denominator of (3.6.3.1). We know from Lemma 3.6.5 that for some

positive constant .\
o18) < =o' (0) + Nipll* = o' (0] + NVipll*

implying
(L= mle'(0)]
[ 7 T 3"
o' (0) + Vil

Dividing by [0'(0)} gives

> —Ll——L); (3.6.35)
|4 il
|o'(0)]

From property P1 it follows that
0'(0)] > $3upll*.

and thus. the denominator of (3.6.33) may be bounded above as follows:

MipllE o Ml _ 2y

L+ =14
'O~ 3 3ullpll? i

A uniform lower bound on a is accordingly given by

> Jl!(l - ’/)

e 1 (3.6.36)
Py .

satisfving the condition. 8
From these results global convergence follows, as given by the following property, to be

proved in the corresponding chapters,
P6. For the sequence generated by the algorithm,
. *
lim o = 27| = 0.
K

* . . .
where 7 s a solution point for the problem.
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3.7. Convergence of Lagrange multiplier estimates

Once the global convergence of the algorithm has been established, the next step is to show
that the multiplier estimate A, also converges to the desired value. The result presented
below, given as Theorem 4.2 in [GMSWS86b], implies that the convergence of the multiplier
estimates is a consequence of the global convergence of the algorithm, and the facts that
the multiplier estimmates are bounded in norm, and the steplength is bounded away from

Zero.

Lemma 3.7.1. Assume that P6 holds, and let X* denote the multiplicr vector at x*. As-
sume also that there exists a positive value a such that the steplength at any iteration is

bounded away from zero: ap > a > 0. Then

lim ||M — A*|} = 0.
k—oo

Proof. From (2.1.2),

k
/\k+1 = Z"/]k;l.j, (371)
=0
where
k
ek =k, ye=a; [[ (1-ak), j<k, (3.7.2)
r=j3+1

with ag = 1 and o} = a;, j 2 1. (This convention is used because of the special initial

condition that Ap = pg.) From the boundedness of a and (3.7.2), we observe that

0<a<a; <1 forallj, (3.7.3a)
k
Z“/ik = 1, (373b)
7=0
e S (1 —a)7. j<k (3.7.3¢)

From condition C8 on the mulitipliers we must have

i = A+ Mdity (3.7.4)
with [M] < M. dg = ||rx — 2*|] and ||txl| = 1. From property P8, A} can be chosen so
that. for & > L'},

| Midy| < Le. (3.7.5)
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We can also define an iteration index K, with the following property:

N € . .
_ T.
U S S O+ B £ 110 (3.1.0)

for k > ') + 1, where 3,y is an upper bound on ||uk|| for all k. Let K = max(h'y, A').

Then, from (3.7.1) and (3.7.4), we have for b > 2K,

K k
Mewr = O Tkky + O k(A + Mydyt;).
J=0 J=h+1

Hence it follows from (3.7.3b) that

K k
Akt — A= Z%k(/ll -+ Z T Mjdyt;.
=0 =R $+1

From the bounds on ||y, and ||¢,|] we then obtain

It
~1
~—

K k
1Akt = A< B XN Y16+ Y Wkl M1 (3.
J=0 j=RK+1

Since & > 24, it follows from (3.7.3a) and (3.7.3c) that
I K _ K ) )
Yok <D (I-a)f <Y (1=ah T < (K + 1)1 -a)t.
1=0 1=0 7=0

Using (3.7.6), we thus obtain the following bound for the first term on the right-hand side
of (3.7.7):
.
(Brmu + IX 1) D 75k < 3. (3.7.8)

j=0
To bound the second term in (3.7.7), we use (3.7.3b) and (3.7.5):
k k
D uklMidi < de D vk < L (3.7.9)
J=R+1 j=K+1
Combining (3.7.7) (3.7.9), we obtain the following result: given any ¢ > 0, we can find &

such that
lAdk = Al <€ for k> 2K +1.

which imiplies the convergence result. g
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3.8. Unit steplength

As mentioned before, the determination of the rate of convergence for the algorithm proceeds
in two steps. One is to show that a unit steplength is always accepted for all £ large enough;
the basic results used for this proof are introduced in this section, although the result will
be proved in the corresponding chapters. The other step is to determine the convergence
rate of the sequence {ri + pi — 2*}. This will be done in Chapters 4, 5 and 6.

The following lemmas determine the limiting behavior of certain subsequences related
to the penalty parameter p. Again, for the case in which the penalty parameter remains
bounded the results follow immediately, so their interest lies in the case when p is assumed
to be unbounded.

The first result is an extension of property PS5, and its meaning is again to obtain a
better bound for the rate at which the penalty parameter may increase, once we know
that the algorithm is globally convergent. As before, its proof is left to the corresponding

chapters.

P7. For iterations &y in which the penalty parameter is increased, assuming an infinite

‘

sequence of such iterations exists,
lim pg|lpe, ]| = 0
1M Pg Pk |17 =
[~

and

lim /’k,HCk: - Skl” =0.
=0

Other resuits, extensions of those given in the previous sections, and providing refine-

ments on the rate of increase for pg, are presented in the next lemmas.
Lemma 3.8.1. If thcre crists an infinite subsequence {k;}, then

Jim e (k) = ) = 0

Proof. We use the same notation as in the proof of Lemma 3.6.2. From the boundedness

of []A]] (Lennna 2.1.1), and the fact that py < py, we have

A

/'01/\{(('0 —= s9)] < 2||Aol| polleo ~ sof| — 0,
/)nl/\lt("/\' - -“l\')i 2”/\/\'11 /’I(H"l\' — syl =0,

IA
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and from property P7 we have
pol@o — @x) = polFo — Fie) — 0. (3.8.1)
Using {3.6.10).
po K ||poll* + polco = s0)T(2X0 — fio) > pocdfio > polco — so) fio. (3.8.2)

Using again property P7, from (3.8.2) and assumption A3, implying the boundedness of

iiol]. we get

pocifio — 0.
From (2.4.1) and (3.6.12) (keeping the same notation}),
— pocifio < pocy'fio < pollfiolillex — skll — 0.
For the last term in (3.6.9), we can again use property P7 to obtain
poO (max(l[poll?, IIpxi*)) — 0.
From (3.8.1), (3.8.3), (3.8.4) and (3.8.5) we obtain
poldo — or) — 0,

giving the desired result. @
Lemma 3.8.2. for general iterations k,

Jim_ pillpif)? = 0.

(3.8.3)

(3.8.4)

(3.8.3)

Proof. If p is bounded, the result follows from property P6 and Lemima 3.4.2. If p is

increased m an itdiuite subsequeince uf iterauons, «nen from (3.6.13) and Lemma 3.6.6,

R -1
2
2
k(|* < = G0 — @x)
m L Il < 5= mlen - o

and the result follows from Lemma 3.8.1. &
Lemma 3.8.3. for general iterations k,

lim pillex — sil| = 0.
k—oo
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Proof. If p is bounded the result follows from ¢ > 0, X* > 0, »*Tc¢* = 0, property P8,
Lemma 3.7.1 and

i — 8§ = min(c‘-,—i).
If p is increased in an infinite subsequence of iterations, consider two cases:
(i) If ¢ is such that ¢! > 0, then AT = 0 and as
plei — si| = [ min(pei, Ai)l,
from the convergence of the multiplier estimates, eventually ple; — s;| = |A;| — 0.

(ii) For those i such that ¢f = 0, implying X¥ > 0, consider iteration indices large enough
so that the correct active set is identified, implying a,‘Tp + ¢; = 0. Then, from the
Taylor series expansion for ¢ (3.6.20) and Lemma 3.6.6 (using the same notation as

in Lemma 3.6.4),
¢ = ¢ + agap + Ollaopoll*) = (1 — ag)ei + O(l|pol|®).

Recurring this relationship for the kth step between & = 0 and & = K we get

k-1 k-1
PkCk, = PoCk, = Pu H(l — aj)c, + POO<Z ”Pj”2),
7=0 j=0
but as § < a; <1 we obtain
k-1
prlex,| < poleo, | + poO (3 IIps112). (3.8.6)
=0

From property P7 we must have that pg|co,| — 0, and using (3.8.6) and Lemma 3.8.2,
pklek,| — 0.

This completes the proof. §
Another relationship that will be needed in the following chapters is proved in the next

lemma.
Lemima 3.8.4. For large enough k,

sk = 0.
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Proof. Assume & large enough so that the correct active set has been identified.
(i) 1f ¢ is such that ¢ > 0, from condition C9 on the multipliers, g, = 0.

(1i) I 7 s such that rf = 0, then. from strict complementarity, )\t > 0. Also, from
Lemma 3.8.3, pe(ex, — s, ) = min{pgcg,, Ak, ) — 0, so for large enough k, Lemma 3.7.1
will imply prex, < Ag,, and

A
Sk, = max(ﬂ,ck‘ - —"—‘) =0,
Pk

proving the result. #

Using the previous lemmas, the following property will be established in Chapters 4., 5

and 6:

P8. There exists an iteration index & such that for all indices k& > & the unit steplength is

accepted: oy = 1.

The following chapters make use of these results to establish the rates of convergence of

the corresponding algorithms.

3.9. Boundedness of the penalty parameter

The main cousideration in the definition of the penalty parameter p is to ensure that the
directional derivative (or the curvature along the linescarch) is sufficiently negative. This
strategy leaves open the possibility that the value of the penalty parameter may be forced to
grow without bounds to satisfy this condition as the algorithm progresses. Notice that for
the convergence and rate of convergence proofs the boundedness of the penalty parameter
is irrelevant; it is only from the point of view of the practical behavior of the algorithm that
we may want to have p bounded.

This section presents conditions that suflice to guarantee that the penalty parameter
remains bounded. The required conditions can be given either in terms of the properties of
the muitiplier estimates, or in terms of the behavior of the ratios {|py{[/|[pz|l (or both). The
study of the sequence of ratios for quasi-Newton methods is not simple, and the conditions
presented liere are given only in terms of the properties of the multipliers.

The following lemma proves the basic result concerning the behavior of the penalty

parameter. The notation jig is used for the QP multiplier at iteration k.
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Lemma 3.9.1. Consider an itcration inder k such that for all iterations with k > k both
properties P1 ound P8 hold. If

20—y = sk = fikl] = O|pa]]),
then there crists a finite value p such that
Ok(0.p) < ~Hullpell®
for aill k > k.
Proof. From the definition of ¢'. (3.6.2), and the fact that py is obtained as a solution for
the QP subproblem. we have
Oy = =pllip+ 22— p— Y e=s) - jils - plle — s|)%.
Also, from the correct identification of the active set and property P8,

/\l) C; lf(": =40

0 otherwise.
Using Lemma 3.8.1 we can write
S0y = —pTHp + (22X = = j1)Te = plle]j?. (3.9.1)

where ¢ now denotes a vector where all the entries corresponding to the inactive constraints
are zero.

From AYp, = —c and the non-singularity of AY (assume k large enough. and use
assumption A3). there must exist positive constants 8y and 3, independent of the iteration,

such that
llell < Sullpyll  and  {Ipy]l < B2l

The arithmetic wean /geometric mean inequality implies that for any y, =, 7 > 0.
yz < —y2 + —z2 (3.9.2)
2 .
Using this resnlt.we can write for an adequate iy,

—p iy < =417 10 Zp, + |




W
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Also. from property P8 and the assumption on the form of ||2pe—y ~ pix — fikll,
(2\p — pup — jig) e < 3 < 3 N < LpT2TH Zp, + B6lipy|l?
(2N = g = ) Te < 34plillell < Bslipllllpvll € §p22 " H Zpz + Bsllpy|I”

Combining these results, we obtain

ONO) < =4piZTHZpy + 3:lpvll? = pllel® < =302 2 TH Zpz — (p = 3:37)cl)*.
and if we select p > .3-,-.3%, the desired result follows. 1

Note that if the multiplier estimate is such that
ek = Al = OUlzx + pic = 27|

the condition in Lemma 3.9.1 is satisfied. Lemma 2.1.3 establishes this property for the
least-squares multipliers at «y + pg, providing an example of a multiplier estimate whose

use guarantees the boundedness of the penalty parameter.

3.10. Summary

The goal of this chapter has been to present the structure of the convergence proofs to be
completed in the following chapters, and to establish those results that are common to the
proofs for the different algorithms. The steps in the proofs that depend on the specific
implementation of the different algorithms have been left to be shown in the corresponding
chapters. These steps are collected below so that they can be more easily referenced.

The next chapters prove that the following results hold for the corresponding algorithms:

P1. There exists a value ¢ > 0 such that if ||pe|] < ¢, then the correct active set at
a solution of problem NLP has been identified, and py is a minimizer for the QP

subproblem.
P2. |lpell = 0if and only if 24 is a solution for NLP.

P3. There exist constants 3; > 0, j3; > 0 such that the incomplete solution for the QP

subproblem, pi, satisfies

glpe + Lpliepe < = 3illpell? + Falirell.
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P4. There exjsts a value i such that for some positive constant 3., independent of the

iteration,

(0, p) < ~Bullpel)?

for all p > pi.

P5. For any iteration k; in which the value of p is modified,

prdlok |} < N

and

piller, — skl < N

for some constant V.

P6. For the sequence generated by the algorithm,

lim ||zx ~ || = 0,
k—o00

where r* is a solution point for the problem.

P7. For iterations k; in which the penalty parameter is increased, assuming an infinite

sequence of such iterations exists,
li llpx|I* = 0
M PPkl =
{—o0

and

lim Pk,”ck, -~ sle =0.
{—o0

P8. There exists an iteration index k such that for all iteration indices & > k a unit

steplength is accepted: af = 1.

The theoremns where the corresponding rates of convergence are established will also be

proved in Chapters 1, 5 and 6.




Chapter 4

Positive Definite Approximations

to the Hessilan

4.1. Introduction

In this chapter we study the convergence properties of an SQP algorithm, defined along the
lines of the framework algorithm introduced in Chapter 2, and such that H; is constructed
to be positive definite. The algorithm is very similar to the one immplemented in the code
NPSOL, as described in [GMSWS86a), with the difference that the search direction in a
given iteratiou is computed as an “incomplete solution™ for the quadratic subproblem. An
incomplete solution in this chapter will be a feasible point for the subproblem obtained
according to the rules indicated in Chapter 2.

The goals for this chapter can be summarized as being

e the derivation of a global convergence proof for the algorithm, following the lines

indicated in Chapter 3; and

o theidentification of additional conditions that need to be imposed to attain superlinear

convergence, and the proof that the algorithm achieves this rate of convergence.

The steps needed for these proofs have already been presented in Chapter 3. where those
intermediate results that are independent of the definition of H have also been shown. To
complete the proofs, this chapter need only establish those results that depend on the form

of Hi. properties P1 P8.

s
-1
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4.2. Definition of the algorithm

The main point left to be specified in the description of the framework algorithm in Chapter
2. s the form of the approximation to the Hessian of the Lagrangian function, H,. The
condition on f; that is assumed to hold in this chapter, and that should be added to

conditions C1 C9. is:

C10. The matrices Hy used in the construction of the QP subproblems are positive definite

and boundea. with bounded condition number.

This assumption is identical to the one made for NPSQP. In practice, such a sequence may
be generated {see [GMSWR6a]) by updating a quasi-Newton approximation to the Hessian
of the Lagrangian function in each iteration.

From this condition, some quantities will be uniformly bounded in the algorithm. The

notation introduced below is used throughout the chapter for these bounds.
3,4 is an upper bound for the largest eigenvalue of H: pTH p < Bi,xllpl|%.

Jeepr is a positive lower bound for the smallest eigenvalue of II: pTHp > BsurIpl*.

4.3. Global convergence results

The resnlts iu this section establish global convergence properties for the SQP algorithm
under study.

The first step in the proof is to show that, from assumptions A1-A2, condition C10,
and the form of step (i) in the solution of the QP subproblem, the norm of p will be
uniformuly bounded for any p obtained as an intermediate step during the solution of the
QP subproblem.

From the condition ||po]] € 3p||é]| and assumptions A1-A2, it follows that ||po|| < K
and

¥(po) < Bamgh + 3Bk = K.
For any p. ofp) < K. implying
Ypv ') Hp+ 0 gy - g™ g < I,
and hence

2]('13.";” + ﬁzmg
Bon

lp+ 1 'g|)? <

.
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giving the bound

_ ,Bnmg + ‘21\-:‘381./1{ + ﬂ?),mg
nmp = .
/331'1{ /33,_,}{

nll < 3

Properties of the search direction

The next result is the one presented in the previous chapter as property P1, that is, if the
norm of the search direct on in any given iteration ||px|| is small enough, then the correct
active set must have been identified.

If the norm of the stationary point where the search direction is computed, |[pg}|, is
bounded away from zero, then condition C6 on the search direction implies that ||pk|| is
also bounded away from zero, and so the proof of P1 needs only consider iterations where
[1pe]l is small.

From Lemma 3.3.1 we know that if this norm is small, we must be close to a stationary
point for problem NLP, &, and in that case we can use the results from Lemma 3.3.2 to
bound the size of the search direction.

Before proviug our first lemma, giving a bound on the descent from the stationary
point, we introduce bounds for several quantities that are related to the descent that can
be achieved in the QP subproblem at & when, starting from the origin, a step of the form
indicated in Section 2.3 is taken.

The step to the nearest inactive constraint is bounded by

, 3
—(ml-T(l =¢i 2 Bepe > a0 > 3 = ]

gnmAgund ‘

The step described in condition C3 is bounded by

o . BascBspr
a2z i3] = mm(ﬁf,#}%’%,a”). (4.3.1)
v un

Also, the following bound on the function value holds:
() < %(1!]7[) < _/jspd = _%ddsc,dspmﬁ;-

Since we only have approximations to the second derivatives, we cannot guarantee find-
ing a direction of negative curvature; consequently, we can only prove convergence to a
first-order KT point. Whenever the terin “solution point™ is used i the following para-

graphs. what is meant is a first-order KKT point for problem NLP.




{.3.  Global convergence results 60

The following lemima uses the previous bounds to obtain a lower bound on the descent
available from p at a point that is suthaiently close to a stationary point for problem NLP.
[t must be remarked that only properties of the approximation to the reduced Hessian,
ZTH Z, are used in the proof, and so the result still holds under the relaxed assumptions

introduced in the next chapter.

Lemma 4.3.1. There erists a value 355, > 0 such that for any stationary point I not a
solution of problern NLP. and any point x, if ||z — || < 3spr and p is the scarch direction
obtained from a stationary point for the QP subproblem at z, p. having the same active
constraints a~ &, then cither

v(p) = v(p) > §Bspus

or at & the Jucobian for the active constraints is singular.

Proof. We cousider only the case when the Jacobian of the active constraints at 7 has full
rauk.

If the lemma does not hold. there must exist a stationary point Z. not a solution for
problem NLP.and a sequence {z,} converging to £. such that there exists an associated
sequence {pg} of stationary points for the QP subproblems at the points zg, having the

same active constraints as I, and such that
-~ " l/,
wr(pr) = Uilpe) € 585pd

for all k.

We show first that [|pe]] — 0. Let p* denote any limit point for the sequence of QP
stationary points (note that the sequence is bounded). From the assumption that the
correct active set has been identified, it must hold that pf. = 0 (since ¢ = 0 for the active
constraints}.

Also. from Hpe + gi = Aljig. selecting any convergent sequence for Hy and using the
non-singularity of Ay for large k, H¥*p* = 0, but from the positive definiteness of ZZ‘II;\.Z;‘-.
it st hold that pb = 0.

From this resalt it must hold that

(IL e AR, — ¢
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aund for large enough & (we assume that the correct active set has been identified),

. . g
nHn (IZ,PIC + ¢k, > osee
x:r).kT Ptk >0 2
In addition to this, if jix denotes the QP multipliers at pi, then iy — j and for large

(‘n()llgh kil i‘/}-ll 76 0.
/Bspm

2

A bound similar to the one in the previous paragraphs can then be obtained for k large

max jig, >
1
enough. as follows. The step to the nearest inactive constraint can be bounded by /33 = %32’.
Define ¢;, = Apdy whenever ||i7]] # 0. Then
T Y T ~
grde + p,{llkdk = e, -

Consequently. for large enough £,

Ajspm

¢'(0) = (gk + Hiepr)die < —Buse n

Hence a bound for the step to the minimizer is given by ’]‘; = %ﬂ;. implying
V(pr) — (P + akdi) > §8spd-

contradicting the hypothesis. §

In the statement of Lemmas 3.3.1 and 4.3.1 the case when the Jacobian is singular has
been explicitly considered. In the next results we make use of assumption A3 to exclude
this case. (The possibility of having a rank-deficient Jacobian will noi be examined.)

We shall show that properties P1 and P2 hold for this algorithm, but first we need to

introduce some notation.

67 denotes the value of & associated with ¢ = 8,5, in Lemma 3.3.1. If ||p¢]] < 67 then the

condition i Lemma -1.3.1 is satisfied.

The main result for this section is presented in the next lemma., where pg denotes the

search direction obtained as an incomplete solution for the QP subproblem.

Lemma 4.3.2. There erists a value ¢ > 0 such that if ||pi|] < ¢ then pyois @ minimizer
Sfor the QF subproblem and the correet active set at a solution has been identified.

Also |pel] = 0 if and only if ry is a first-order KKT point for problem NLP,
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Proof. From Lemma 4.3.1, it holds that if ||pi]| < 6° and p, was not obtained as the

minimizer for the QP subproblem, then
V(Px) — ¥(pk) > %ﬂapd

and from the continuity of v, there exists a § > 0 such that ||px — pi|| > 6.
Define 5
o = H 60 =)
/31 m]n( ’ 2)
If ljell < 47 then
. . ) o
llpell > 1Pk — pell — [Pkl > 52 3.
If {|pel] > 37, then from condition C8,

| Pxl N Ji5

dslp ,lep

and thus in all cases the final point obtained has norm bounded away from zero.

llp]l >

If pi is obtained from tue minimizer of the QP subproblem, then Lemma 3.3.1 can be
used directly. Assume that a sequence of points {z} exists such that ||px|] — 0, and all py
are obtained as the solutions of the corresponding QP subproblems, but the active sets do
not correspond to the one at a solution. By extracting a subsequence having fixed active
set (there are only a finite number of possible active sets) and taking limits, a solution for
the original problem with that active set is obtained (from assumption A6, it must hold
that the multiplier vectors converge to the multipliers at the limit point), contradicting the
hypothesis. Hence, a lower bound for ||pi|l must also exist in this case.

For the second part of the lemma, from the previous remarks, p; = 0 if and only if px

is a solution for the QP subproblem. Furthermore,

pr = 0 is a solution of QP & g = AkTpk, e 20, ¢ 20, /thk =0
& 13 is a first-order KKT point for NLP, (4.3.2)

completing the proof. 1§

Descent properties

As explained in Chapter 3, we need to impose some condition on the direction pi to ensure

that adequate descent can be obtained in each iteration. To be more precise, the bound on
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the directional derivative in step (iii) of the algorithm should be satisfied. This condition
was presented in the previous chapter as property P3.

The next lemma shows that if the starting point for the QP subproblem is selected as
indicated in Chapter 2, the search direction satisfies property P3. Remember that ry was
the quantity introduced in Chapter 2 to provide a bound for the norm of the initial point
Piko- and that its most relevant property for the proofs that follow is its relationship to

Cp — S, given in (2.2.5).

Lemma 4.3.3. There erist constants 31 > 0, Jy > 0. and initial points for the QP sub-

problem that give values for pe. the scarch direction, satisfying
gk + 3pEeps < =3 lpell® + Ballrall. (4.3.3)

Proof. In the proof we drop the subscript corresponding to the iteration number. Consider
the following cases:
{1) pis obtained as the solution of the QP subproblem. Then, for some g > 0,
plg + pTHp = pTATE = ~cTi < —iTe™ < Jljilllle ||
plg+ 1pTHp < ~3pTHp + Bumulle |,

where 3, > 0is a bound on the norm of the QP multipliers. Note that from
condition C10. pTii p > 35.17||pl|%.

(i1) p is obtained by moving from a stationary point p. Different cases need to be consid-

ered separately.

o Assume that ||pl] > 6° and [|p — pol| < 36°. If [|é]] < €, = 87/(23,.), then from (2.2.6),
1Pl < 36+ llpoll < 6% + Bycllel] < 67,
but this is 4 contradiction, implying that under this condition ||¢]] > ¢, in which case
/3nmp - s
1P < ump < 222 6] = K]
1
Defining 3y = 3nny + 3i0H 3nmp. We have
plg + pTHp < 3S0pll < BKNE] < AZK Bnme.

Using the condition on the initial point, it must hold that ||po)| > 16, and

Zf [\ nnn‘jp«s
———-——ll |l

(¥}

Pl + %])TII p< ——%[)Tllp
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o Assume that ||p—po|| > 36°. If ¢; denotes the objective function for the QP subprob-
lem after the ith QP iteration, v; = ¢7p; + zp, THp;, we can write

Viot = ¥ = —aq(g7d; + pl Hd;) — La2dTHd; = dTHd; ai(1 ~ Lay).
Summing over all the iterations to the stationary point, and letting v =gTp+ %ﬁTH;},

vo — € = YudTHd; ai(1 = 3a0) > Bounr S liil* ai(1 — §i),

but from ||p — poll = || i eudi|l > 38°, for at least one i we must have
60

where 1 is a bound on the number of steps; using a; < 1, it must hold that

2
6° 1 1 6°
— > dgy — - = y =13, . 4.3.4
v — U “H(Zm> (O’i 2) v =355 1{< ) (4.3.4)

Yo = pigo + 1pSHpo < B5lpoll < BpesBslIrl| (4.3.5)

From

we can derive the following bound:
P'g+3pTHp < < w0~ 7 < =Billpl® + Bres Bl
for 0 < 3 < ‘7’/,’]3,,”}.
o If {|p|| < &7, then from Lemma 4.3.1,
Yo — ¥ > ';}ﬁspdv
and using (-1.3.5)
Ty + 50 Hp < LBupa + Bpes B3Il < —=Bullpll® + Bpes 331711,

where {) < jl < }sprl/ nmp) 1
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Bounds for the penalty parameter

We now show that the penalty parameter can be selected in such a way that the initial
descent available for the linesearch is sufficiently negative. This result is the equivalent to
property P4 in Chapter 3, although in this case (since H} is required to be positive definite
from condition C10) it seems natural to define the constant 34 in terms of p[]lkpk, as in
the next lemma. In the spirit of the remarks made in the previous chapter, what we define is
a bound for tlie value of the parameter; the actual value should be chosen so that it satisfies

property P4 and is bounded by a finite multiple of the value p given in the following lemma.
Lemma 4.3.4. There exists a value py > 0 such that
$4(0,0) < —5piHips (4.3.6)

Jor all p > py.

Proof. Again. we drop the subscript corresponding to the iteration number. From (3.6.2),

the condition to be satisfied can be written as
: T
plg+ 022 =) e=s) = ple = s)c—s) < —%p Hp.
A similar but stronger condition is

—ble—s)+ 13,'2'1.!7(c —s8)+ (22~ ;L)T(c —s)=plc=s)(c-s)<0 (4.3.7)

|

for a vector b uniformly bounded in norm, a constant 3; > 0, and v; = sign(¢; — s;), so that

rT{c — 5) = |jc = s]|;. These parameters must satisfy

Py + %pTHp < <bMc-s)+ ﬁ;vT(c - s).

The following paragraphs introduce specific definitions for b and j3}.

Rearrangement of (4.3.7) shows that a sufficient condition for p is
ple =) le—s)y> 22 —pu—-b+ Byl (e - s). (4.3.8)

A value posuch that (4.3.8) holds for all p > pis

. H2A — pu — b+ 35|

lle = sl

(1.3.9)




4{.3.  Global convergence results 66

The value p can be taken as (4.3.9) if ¢'(0,p7) > ——%])Tllp, where p~ denotes the value
of the penalty parameter at the previous iteration; and as any value greater than or equal
to p~ otherwise. |

An immediate consequence of (14.3.6) and condition C10 is the satisfaction of property
P4,

&4(0) < = L84|Ipell? (4.3.10)

for 35 < e

The value of p in the previous lemma has been given in terms of two as yet undefined
quantities, b and .3}. The value for 3} is related to the constant introduced in property P3,
while the value of b is related to the QP multipliers at the current point. For the purpose
of satisfying property P4, b can be taken to be zero, but as will be seen later, it plays an
important role in ensuring that the penalty parameter is chosen in a way that does not
inhibit superlinear convergence. The following paragraphs offer rules for the definition of
tliese two (uantities.

The conditions that b needs to satisfy to allow the algorithn: to converge superlinearly
are:

b — A,
and for small enough ||pil).
plgx + 6X(ck — s1) < —%Pzﬂkl)k-

The values for b and 35 in (14.3.9) can be selected as follows:

o Define yip as the QP muitipliers if p; was obtained from the minimizer for the QP

subproblem: otherwise define i as a multiplier estimate satisfying conditions C7-C9.

o Define

; poif plg+p¥(c—s) < —plHp,

h =
jt otherwise.

o Define

3, = maX(O,Bz),

where

,132”6 -l = plg+ %pTHp +b7(e = s).
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Note that 3} is bounded, since from Lemma 4.3.3,
pTy + %pT”p +bl(e - s) < pTg + pTHp + BT(C -s)< (B2 + ||5||)||c - s\

The strategy for the selection of the penalty parameter py is to define its value to satisfy
property P4, while remaining small enough to be bounded by a multiple of g. An example
of a selection rule having these properties is as follows.

Let

i = Pk-1 if ¢'(0,pk—1) < —%p[l]kpk, (4.3.11)

max(pi.2pk—1) otherwise
where py is defined as in Lemma 4.3.4. Then, for any iteration k; in which the parameter
needs to be increased, it holds that py, > 2py, |, and the penalty parameter goes to infinity

if and only if its value is increased in an infinite number of iterations.

Proof of global convergence

In order to prove global convergence, we need to establish that property P5 holds. The
proof of global convergence relies on Lemmas 3.6.1 to 3.6.6 to show that the descent in each
iteration is bounded away from zero by a large enough value, and on the boundedness of

the merit function. The nexi lemma shows that property P§ holds for this algorithm.
Lemma 4.3.5. For any iteratiocn k; in which the value of p is modified,

pillpill? < N
and
pillcr, — skl < N,

for some constant N .

Proof. All quantities in the proof refer to iteration ki, and so this subscript is dropped.
From the boundedness of /3, Lemma 2.4.1, the definition of b, and condition C7 on the

multipliers. there must exist a fixed constant N; such that
12X — = b+ Byl < Ay,

and from the definition of p and the condition that p has to be selected as a finite multiple
of p,
plle - sl < Mo,
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For the second part, using Lemma 4.3.3 (we add the term b7(¢—s) using the boundedness

of {1b]1). we can write after some algebraic manipulation

o'(0)

Pl + (22 = ) Te = s) = plle = 5|2
=3 Hp = illpl® + (X = = b+ B20) (e = ) ~ plle - 5|,

IN

and if we have o'(0) > —%pTllp. then
Suipl? < (23 = p=t+ 30) (e = s) < [|2A = = b+ Bav| fle - 8]

We reorder terins to obtain

, [l '
—al> 3 A ) 4.3.12
fle = sll 2 3 12X = o — b 4 30| | )

Multiplving both sides by p and using the same arguments as in the firs. part of the
lemma vields

plipll* < Na.

completing the proof.

We can now complete the proof of global convergence.
Theorem 4.3.1. The algorithm described in this chapter has the property that

Jim {[pel] = 0 (4.3.13)

Proof. If {[pi]| = 0 for any finite &, the algorithm terminates and the theorem is true.
Hence we assume that {[pe|] # 0 for any .

When there is no upper bound on the penalty parameter, the uniformn lower bound on
a of Lemma 3.6.6 and (3.6.15) implies that, for any é > 0. we can find an iteration index
K sucl that

Ipell < 6 for k> K,

which implies that Ypi]] — 0 as required.

In the bounded case, we know that there exists a value p and an iteration index A" such
that p = pfor all b > K. We consider henceforth only such values of k.

The proof is by contradiction.  We assume that there exists ¢ > 0 and an infinite

subsequence {k} sach that |Ipg, || > ¢ for all i. Consider only indices ¢ such that & > K.
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Fuery teration ater A must yvield a strict decrease in the merit function because, using

Lemma 3.6.6. (1.3.10) aud the fact that the penalty parameter is not modified,
ola) — o)) < cag'(0) < -—%0’0,3””1)”2 < 0.

The adjustment of the slack variables s in step (i) of the algorithm can only lead to a further
reduction in the merit function, as L is quadratic in s and the minimizer with respect to s,

is given by ¢, — A /p. For iterations from the subsequence we have
) : 13 2
Adg,, ) = o(xk) < O(rp,41) — Olak) € —50a3¢”.

Therefore. sinee the merit function with p = p decreases by at least a fixed quantity at
every step in the subsequence, it must be unbounded below. But this is impossible, from

assumptions Al. A2 and Lemma 2.1.1, so (-£.3.13) must hold. 1

Corollary 4.3.1.

Jim [l = 2% = 0.

Proof. The result follows immediately from Theorem 4.3.1 and Lemma 3.-1.1. 1

A second corollary establishes the convergence for the multiplier estimates.

Corollary 4.3.2.
klim_ I\ = AT = 0.

Proof. The convergence of the multiplier estimate is a consequence of Lemma 3.7.1. given

the results i Lemima 3.6.6 and Corollary 1.3.1. 1

4.4. Rate of convergence

Under snitable additional assminptions it is possible to show that the algorithm converges
at a superlinear rate. To prove this result. we need to assume that Hji converges to an
adequate approsimation of V2 L(e* A*). the Hessian of the Lagrangian function at the
solntion.

In the following results the svimbol W, defined as W = Y2 L. will be used to denote
the Hessiau of the Lagrangian function.

The conditions that we impose, in addition to C1 C10, are:
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C11. Following Boggs, Tolle and Wang [BTWR82], we assume
NZE(He = Wipell = ollpel)),

where 7. a basis for the null space of Ay, is bounded in norm and its smallest singular

value is bounded away from 0.
C12. |jux — X*)| = oljlar — z*|)).

This is not the only set of conditions under which it is possible to prove that the
algorithin converges superlinearly. The next chapter introduces and justif'es an alternative
set of conditions, where C12 is replaced by the requirement that the , aulty parameter
must be chosen large enough near the solution.

The proof proceeds by showing first that the sequence {zj + py — 2%} converges super-
linearly, and then proving that a steplength of one is eventually attained. We begin by

showing that property P7 holds for this algorithm.

Lemma 4.4.1. If there exists an infinite subsequence of iterations {k;} at which the penalty

parameter s increased, then
: 2
lim pglipe i =0
=

and

Jim pilex, = sl = 0.

Proof. We drop the subscript &; in what follows. From definition (4.3.9) and boundedness

of the ratio p/p.
plle = s|| < 2)120 — = b+ 32|l

and from the definition of b after Lemma 4.3.4,
by, — M.

As the QP multipliers satisfy pTg + pTHp = —cTj1, and for p large enongh p is obtained as
[ pgrpip / plarg

the solution of the QP subproblem, b eventually satisfies
plg + b1~ 5) < ~plilp,

implying that we can take 45 = 0in (4.3.9).
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From Corollary 1.3.2 and the previous remarks we have
. S I !
IlLHl 122k, = b, = bi + H')k‘ vl =0
and
Ill_fll Priller, = sk ll = 0.

We can now use (1.3.12) to get
lim piflpe? = 0,
completing the proof. §

We want 1o show that condition (2.2.3) is satisfied for all / large enough. To do this,
we need to be able to express ¢’(0) in a way that is related to properties of the algorithm
already established.

We start by defining T, = p{(gk - AZ}L‘:) + pZ‘I'Vkpk, where 117 is the Hessian of the
Lagrangian function using A as the Lagrange multiplier estimate. We show next that the
satisfaction of (2.2.3) is directly related to the asymptotic properties of Tj.. In what follows,
the absence of an argument indicates values at r, and an argument of § will indicate values

at g + Upi. for any fixed 6 € [0, 1].
Lemma 4.4.2. The following relationships hold:
or(8) = 0k(0) = 8(1 — 16) 6(0) + 367 Tk + o ||pl*)

and

Ok(0) = (1 = 0)0(0) + 8 Tk + ol || p|®)-
Proof. From (2.2.1) we have

o)y—o=F#H0) - - (A + 0(p — A))T(((O) -8 — 9(1) + Mie - 5)

4 1p(ct8) = < = 8) " (c(8) = s = 84) = Lolc - (e - ).

and using the corresponding Taylor expansions around rg,

('1(0) A N H(ll = (l o 9)(('1 - Sl) + %02])’1&‘2(‘!]) + ”(|I])“2)‘
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we obtain
o — o = (}ng + %()21)7'7”*]) —(i- 0)/\7'(c - s8)—6(1 - 0)£T(c - 8)
= AT AP T ep - 30T p T iep + Ml - )
+ 301 =0 (e~ ) (e — )+ 1p(1 - )87 (e; — ) p"Veip
+ 20T PV ep)t — dplc = s) (e~ s) + ol Ip])?).

From Lemmas 10001, 3.8.2, 3.8.3 and 3.8.4,

G- o= 00"+ %02(1)7‘”’1) +260e ) + ple - ) (e - s)) +o(|pl1*)

= 61 - %H)O' + %()" (pTIVp +plg+ e - s)) + o(ipl]*)

11

a1~ L6)o' + 14° (,ﬂ‘u'p+ »lg — A"ﬁ)) + o(l|pil?).
For the second result, from (3.6.1),

o) = plygiey — ‘7)’[;~1(9)T(’\ +0(u - ’\)) + /JPTA(O)]‘(C(H) T8 9(1)
~ & eld) -5 - eq) + qT(/\ + 8y ~ /\)) - /"/T(('(@) - 8- 9(1)-

and again naing the corresponding Tavlor series expansions we obtain

oy = plyg+ 8pI Ep = pTATA = 0pTATE — 95 0, p N 2eip
— BT pIN e+ p(l - 0)])’[‘;‘7.((,‘ - 8)+ %/)922:1(:1?1))])7?26,])
+ pb(1 = 0) (e = s) p'N eip + 1p8° Y (pV R eup)?
(=) - 5) - %022{5, 1)7\72(‘,;) +¢'a+0q7¢
= pll = 0)g" (e = 5) = $p07 5 0.0 2 ep + ol lIpl1?).

From Lennnas b 38203805 and 38010 we finally get

«"/’( /)} = r,'/l +- # (/}1”]) + ZEI(/' - 5') + /7(( - }T((' - S)) + {)(”])”2)

= {1l -8 + 9(];7'11';) +plg -~ A-l']‘/l)) +o(|ipli*).

completing the results. 18

The following results make use of the relationships introduced iu this lemma only for
the particnlar case 8 = 1.

Condition CLT nnplies the supetlinear convergenee of the sequence {og + pe - o'}, as

the next letnma shows,
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Lemma 4.4.3. [f condition C11 holds, then

ek + pe = 2% = o(]lek = =¥ (4.1.1)

Proof. Assumie & to be large enough that pg is obtained as the solution of the QP sub-
problem. aud the correct active set has been identified.
In what follows, all values refer to iteration k, except those corresponding to the solution.

Consider first the decomposition of z + p — ¥ into null-space and range-space components:
* - ,
r—r =Zu+ Yu.
For the range-space component we make use of the series expausion, restricted to the
active constraints at r:
o *
—z)+ol]lr —x7]).
From Ap = —¢ and the previous decomposition,
, *
AY v = o(l|]x = 27|]).
and from assumnption A3.
*
v = ofllz = a7]).

For the null-space component. consider the corresponding Taylor series expansions

around o

:‘* T/\*

9" =g+ VIF" — o) +offjr - 27)),
A = AT T2 — 1) + o]z - ).
Combining these two results and denoting the Hessian of the Lagrangian function by 1§,
Wi =)+ A = g+ Tuh = XV = 25) + o ||lo = &)
From Corollary 1.3.2 and Hp+ g = ATa,

Wir+p-s)+ AT =)= (H = Wip+ oz - 2*)).

Using the decomposition of r + p — ¥ into null-space and range-space components. the

previous resnlt gives

20 zu = 2000 = Wyp = ZTWY e 4 ol - 2D,
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and from the properties of v, condition C11 and the nonsingularity of ZTW Z near the
solution,

u = olllx - ),

completing the proof. B
The maiu result of this section is given in the next theorem, where it is shown that
after a finite number of iterations a steplength of one is taken for all iterations thereafter,

implying that the algorithm achieves superlinear convergence.

Theorem 4.4.1. {nder the previous conditions, the algorithm converges superlinearly.

Proof. A~ in Powell and Yuan [PYSR6]. observe that the continuity of second derivatives

sives the following relationships:

N ; . 1 T 2
Fle+p) = Fx)+ ;(g(:r) + gz +p)) p+ otlpll?)
o(r+p)=clzr)+ %(A(r) + A(x + p))p + n(||p]|2).

Fram the Tavlor series expansions we have

Flr+p) = F(z)+g(a)p+ 5pTV2F(2)p + o(lipl]*)
cle+p) = alx) +a(z)p + 1T (2)p + ol|ipl®).

and since (L1 hmplies g(r 4+ p) = ¢ + o(llpl]). ailx +p) = & + o(||p|]). we get

PV = (6" - 9)p + olIpll?)
pN%p = (af - flx‘)TP + o(||pl1?).

Given that 5, A pIN2ep = 5, 1 p"V2%eip + o(||p||?). we must have
plvp = pTg* = Ay = plg = AT) + ollIpl?). (1.1.2)
Condition C12 implies plig* = A7) = o(|lpl]*), and from (1.4.2),
P Wt plg = ATy = olllpll?). (4.1.3)
From Lenima 1402 and (1.4.3),

o(1) = o(0) = L1o'(0) + o(|Ipll*)

o'(1) = ofllpi®).
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but from (-1.3.10) condition (2.2.3) is eventually satisfied, and we have r,yy = x4 + pi for

all &k large cnough. In this case, from (4.4.1),

lzees = 2] _

[im =0,

k—x |lrg — 2*||

i.e. superlinear convergence, completing the proof. 1

4.5. Summary

In this chapter we have introduced and analyzed an algorithm that is based on the framework
algorithm ol Chapter 2. It uses a positive definite approximation to the full Hessian of the
Lagrangian function. and an incomplete solution for the QP subproblems. The study of the

convergence properties of this algorithm has produced the following results:

o When the search direction and the multiplier estimate are defined satisfying conditions
C1-C9. aud the llessian approximation H; satisfies condition C10, the algorithin is

globally convergent.
e The algorithm converges superlinearly if the following conditions are satisfied:

Cl1. Z,Zi( Hy — Wipel) = olllpkll), where Zi, a basis for the null space of Ay, is

bounded in norm and its smallest singular value is bounded away from 0, and

C12. {|jix = X = o(]|ex — 2*|)).

In the cliapter that follows, we will show superlinear convergence for this algorithm

under condition C11 and an alternative to C12:

C12’. When the iterates are close to the solution, the penalty parameter is chosen to be

large enough.




Chapter 5

Approximations to the Reduced

Hessian

5.1. Introduction

This chapter considers an algorithm similar to the one presented in Chapter 4, with the
difference that conditions C10 and C11 are relaxed. We shall now only impose conditions
on the approximation to the reduced Hessian (but not on the full Hessian approximation).

There are three main reasons to consider relaxing our requirements. From the second-
order optimality conditions, only the reduced Hessian can be expected to be positive
semidefinite at a solution of the problem, and so it seems unreasonable to attempt to
approximate the full Hessian by a matrix that is required to be positive definite. We may
wish instead to impose positive definiteness only on the approximation to the reduced Hes-
sian. Secondiy, the size of the reduced Hessian is usually smaller than that of the full
Hessian, and in many cases the difference in size is significant. For large-scale problems.
approxtinating the full Hessian is problematic, whereas approximating the reduced Hessian
can be straightforward. Finally, it is not known in genecral how to construct matrices Iy
that satisfy conditions C10 and C11, but on the other hand, it is not too difficult to enforce
satisfactory conditions on the asymptotic properties of the reduced IHessian approximation.

The conditions that replace C10-C11 take the form:

C10’. I, is uniformly bounded, and ZTH.Z: is positive definite with smallest singular
y k P
value bounded away from zero, where Z; is a basis for the null space of the active

constraints at the inutial point for the QP subproblem at z.
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Cr1'. |20 - W Zipa |l = oUlpel))s where Wy denotes the Hessian of the Lagrangian

inction at g

The definition of the reduced Hessian requires the specification of a set of active con-
straints. Cructal to the issues presented in this chapter is the notion that at each iteration
an anitial Tactive set” of constraints. whose characteristics will be specified later, is selected
prio: to attempting to solve the Q' subproblem. Condition C10” makes use of this as-
sumption when imposing conditions on the reduced Hessian approximation. From iteration
to iteration this active set may change, and this reyuires the definition of a strategy to
cope with the changing size of the reduced Hessian approximation. Fortunately, this is not
atcissue in the limin, provided we can show convergence, since any reasonable definition of
the initial active set for the QP subproblem will eventually remain unaltered for successive
nonlinear iterations.,

Conditions C10” and C11” apply only to the reduced Hessian approximation, and the
convergence proofs presented in this chapter impose no requirements on the matrices H Y.
[t seems reasonable then to ask what is the role of these matrices, if any, in the algorithm
considered. The awswer is that ZZ‘”R‘ Ye is needed for the computation of the null-space
component of the search direction py, . and Y'kTHkY"k is used to obtain the QP multipliers.
Il our main concern is to define an algorithmn able to deal with large-scale problems, we
mav take advantage of the freedom we have in the definition of these matrices, and select
them so that the computations in which they appear become as simple as possible. A
conmnon clivice has been to take ZZ‘IIk}."k equal to zero and ).'kTIlkY'k to be a well-behaved
positive definite matrix, for example the identity. With these choices and condition C10°,
it 15 clear that C10 is automatically satisfied, and the proofs in Chapter 4 only need to
be modified wherever they make use of C11, that is, for the purpose of establishing *he
rate of convergence of the algorithm. (In this setting C11 can no longer be expected to be
satisfied.) The modified proof using C11” is given ai the end of the chapter.

The preceding paragraph considers only a particular set of options for the definition of
Hi. A more general approach to the problem would be to define an algorithm with sincilar
convergence 1-operties, but requiring only condition C10°. instead of €10. This situation
arises if for o program of moderate size we are approximating the whole matrix Hy, but we
only require /:Z'IIL.Zk to be positive definite, Constructing /. in this way would allow us
to achieve better rates of convergence than the ones attainable when we only approximate

the teduced Hossian.
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One case that this approach would cover is the use of one of the recentiy proposed
quasi- Newton updates that preserve only the positive definiteness of the reduced Hessian
approximation (sce for example [Fen87]).

The chapter proves global convergence for an algorithm that assumes only that C10’
hoids. Again. note that for particular definitions of Hj that satisfy condition C10, like
the one indicated above. the global convergence proof in Chapter 4 is immediately applica-
ble. The chapter ends with 4 proof for the rate of convergence of the algorithm when the

approximation to the Hessian is required to satisfy the relaxed convergence condition C11°.

5.2. Global convergence results

We begin by iutroducing some notation for this chapter. Let Zk. as above, be a basis for
the null space of lk the Jacobian corresponding to the constraints active at the initial
point pi,. for the QP subproblem at ri. Let ¢, denote the value of the constraints in this
set at the carrent point, and Y a basis for the renge space of ;1{ The vectors p, and py
are used to denote the components for p in some null-space and range-space decomposition.
respectively: the specific decomposition will in general be clear from the basis matrices used
iu the corresponding expressions. Finally, w. < 0 is a vector such that Ap = —(¢ + we).
and we extend it to a full m-dimensional vector by adding zero entries corresponding to the
inactive coustraints at the initial point.

Under condition C10°, pz‘[[kpk may take negative values, in which case Jg,77 < 0. On
the ot her hand. this cannot happen for vectors in the null space of Ax. We therefore use

the following constant:

3s207 is a positive lower bound for the smallest eigenvalue of Hy on the subspace spanned

by Zi: phZ 1 Zips > 3snl| Zip2||®

Properties P1 and P2 still hold under the new conditions. They may be proved using
arguinents similar to the ones presented in Chapter 4, with only a minor modification
nitroduced in Lemma 5.2.1. The main change to be made to the algorithm given in Chapter
4 is the introduction of a new bound for the directional derivative of the merit function.
In Chapter 1 the bound was given as —%p[l[kpk, but under the relaxed assumptions on
1y 1his quantity miay not be positive in all iterations. The new bound should preserve the

property that the directional derivative is bounded away from zero by a qnantity related
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to [plif. .\ reasonable choice is to use a linear combination of pdZ7H Zp, and ||é[]? to form
the bound.

A second change is the definition of py. to take into account our lack of knowledge about
the propertios of Hy outside the null space of the “active” constraints. In Chapter 1 the
search direction was obtained from the QP stationary point by taking a descent step with
respect to the QP objective function. In this section the step from the stationary point is
computed in terms of the value of the descent available for the linesearch, as this function in

general hias better properties (convexity) than the QP objective function. A more general

approach is presented ina slightly different setting in Chapter 6.

Definition of the search direction

As mentioned above, we modify slightiv the way the incomplete solution py is obtained from
the QP subproblen. with respect to the conditions given in Chapter 2.

The value of peis now obtained by moving to the first stationary point for the QP
subproblem found by the algorithm, pg, and from there, if the stationary point is not a
minimizer for the QP subproblem, by taking a step along a descent direction. To proceed
further does not seemr worthwhile. Since only an approximation to a particular reduced
Hessian is kuown, it becomes necessary to define artificially the curvature in an enlarged
space, when auy constraints are removed from the active set. If we have an approximation
to the full Hessian, and the properties of the approximation outside the current subspace
are not controlled, the search directions computed may be unacceptable unless special pre-
catitions are taken. In Chapter 6 we introduce conditions that would allow us to prevenut
these difficulties,

The requirement to stop at the first stationary point allows us to work with the redeeed
Hesstan approximation for the initial active set exclusively, and so the possible lack of
positive definiteness outside the corresponding subspace does not affect any of the steps
takew during the solution process for the QP subproblem. In particular, conditions C4 and
C5 will not he used in what follows.

Define ¢ 1o be such that if p = )+ ad, then w. = av., where clearly vo < 0. Assume
that d is cotputed so that conditions C1. C2 and C6 are satisfied, and in particular the
following condition hofds.

”’I'([ voplHd < ,i,is,.t",rll

2

for some A4, - 0. Note that condition C1 fmplies that v, must be bounded, [[ed]] < e
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Condition C3 is replaced by the following condition:
C3’. The step « is taken as the step to the minimizer of ¢(({), where
A = g p+ Cd) + 3 (2 + CdTZTH Z(p2 + Cdz) + 16 + Cuel?).

To be more precise, if ©’(0) > 0 then let & = 0. Otherwise, let a. be the step to the

nearest inactive constraint and define

_ ¢(0)
am = = ‘P”
a = min{a., an, ay),

where «,, is a specified bound on the largest acceptable step.

Also, from the conditions on pg in step (i) of the rules to compute the incomplete search
direction, and from the way a and d are obtained, we can show again that ||p|| is unif mly

bounded for any p obtained during the solution of the QP subproblem.

[f A denotes a uniform bound on the norm of the initial point obtained from (2.2.6)

and assumption A2, ||pof] < K, we have
(po) < Bamgh + 3B + B2, 4)K? = K,
and for any p up to p, as py = py,, it holds that o(p) < K, and hence
%(pz + (ZTIIZ)'lzTg)TZTHZ(pZ + (ZTHZ)'IZ.Tg) - %gTZ(ZTHZ)_IZTg <K.

From this result, we get the bound

21;’ﬂszH + /B?zmg
‘BEZH ’

lpz +(ZTHZ) ' ZTg|% <

implying

- 2

- Bum 2K By, + 32
lpall € K = =222 4 - =
Bs:H H

For the step along d, note that

a < ﬂnmg + BszH I; + ﬂnmA K
- 55:/1322,“1 )

and from ||d|| < 3,4 we must have that for some S,mp,

Il < Brmp-
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The argument in the proof of Lemma 1.3.2 still applies to this algorithm, except for
one minor cliange induced by the introduction of condition C3’. 1t now becomes necessary
to prove that a bound similar to the one in (4.3.1) still applies to this algorithm, at least
for the case when J|p]] is small enough (otherwise, condition C8 is sufficient to imply the
result). The following lemma establishes this result, and so it indirectly proves the validity

of properties P1 and P2 for the algorithm.

Lemma 5.2.1. If ||p|| < &', where

ﬁdscdspm )

6t = min((“'.
8,‘311:11‘61”1{1 + ‘1F/3nmv‘jnm,4

then oo s boandod away from zero in condition C3°.

Proof. Iruin the definition of £/(0).

gTd+ pt7TH Zd, + éTe.
gTd+ pTHd - pTHY dy — pIYTH Zd, — vTAp

'(0)

i

A

l';-l‘ﬂ + (2‘}11‘11 dund + .dnmudnm;l )HIA)H

For [ljl] < o'
1

;/(0) < 1‘!/‘ + 71{3a'sc55pm < %l'cll-

and from condition C2,
,\" ] i 2
£ (0) < ‘descjspm-

The step to the minimizer of @(¢) is given by a = —~'(0)/¢". and as

S =dZTHZd, + ||e)? < max(Buys B2 0084 = 8"

>

we can write o hound for this step as

/3dsc,‘(jspm

3"

(43 Z /j,,ln =

Again, selecting .i; = min(J32, ;’3,‘,1) and using the same reasoning as in the discussion before

Lemuma 1.3.2. we get that the step satisfies a > %ﬂg'. i

From this result, properties P1 and P2 follow along the lines presented in Lemma 1.3.2.
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Descent properties

The next result that we need to establish is that the descent condition given in property

P3 holds for this algorithm.

Lemma 5.2.2. There exist constants 0 < §; < %, B2 > 0, and initial points for the QP

subproblem that give values for the search direction p; satisfying

prgx + 3L ZTH Zipz, + 116k + we, |2) < =Bu(ph ZEH Zipz, + |6k + we,|1?) + B2llrell.

. Since no constraints are deletea irom the active set urntil a stationary point is
Proof. sin onstraints are d Vo1

reached. we must have py = py,. Consider the following cases:

{i) p is obtained as the solution of the QP subproblem. Then for some ;i > 0,
Py + pTHp = pTAT = —cTa < [alllle™ | < Wallir
and as w. = 0 at the solution, ||é|] € Bnmallpoll and py = pyy,
piHp = pYZTH Zps + (p+ Zp)THY pro < PEZTH Zps + 281eh 3nmp Bpes|I T
and we finally get
plo+ 32 TH Zp, + E%) < =3(p22TH Zp, + ||&)%) + K |irl,

where

I = [jnmu + z,ﬁlv}{ﬁnmpﬂpcs + ‘3nmA,HpC5'

(ii) p is obtained by taking a descent step on ¢ from a stationary point p. There are a

number of possibilities:

o I lpli > &' and [|p — po||] < 16!, we need to consider different values for ||é||. If

el < e1 = 6'/(23,c), then
1Bl < 38" + [Ipoll < 36" + Byellél] < 61,
but this is a contradiction, so we mu-* have ||é|| > ¢;, in which case

191 < Bamy < 22211 = Kl
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5.2

implying that for 8} = Bumg + (Biesr + B2 4)Brmp
Pl + (PIZTH Zp, + |E|1*) < B3Il < B3KC|JE])-
Finally. using ||¢]] € Bnmallpoll < BamaBpeslirll,
Py + 302 THZp, + |E*) < - 30527 H Zp, + ||E|1P) + K|
where I = 23} BrmpBnmaBpes /6.

Let . denote the function used to bound the desired descent. If ||~ pol| > 14! then,

after the kth QP itevation,
2k = 9ok + S(p5ZTH Zps, + I[ElP).

Making use of the fact that py, = py, for all & up to the stationary point, we can
write

Phot — 9k = Yk — Yk + DL Y TH Z(pay — p2_y)s

where vy 1s the QP objective function after iteration k. For all iterations between the

initial point and the stationary point, it holds that
vo ==t~ +plYTHZ(p; - pay)-
We can use (4.3.4) to write
LY TH Z(pz = p2o)l < 2Bt BrmpllPoll < 28111 BnmpBpcslitll = K1)l
If we let v = g — w, it follows that
e <P <po— 5+ K.

From one of the intermediate results in the proof of Lemma 4.3.3, we have 5 >

%;}S;”((\"/‘lm)z. Consequently,
ply + SWIZTH Zp, + |6 + wdll?) < =B1(pEZTH Zp, + |6 + wo)P) + K|,

where ' = K’ + ,’35 and
;7

0< ) € ———.
Bivti B2y




5.2.  Global convergence results 84

e If |l < ¢!, we know from Lemma 5.2.1 that we have descent for o, and the minimal

descent rate is bounded by

where — 210}/ is the step to the minimizer. As the step is at least -%;3;, by assuming

thie same {minimum) rate of descent as before, we get for the descent from p,
P 1. Ial S 1 1
N 2 2¥ (O) Eﬂg 2 gﬂdacﬂspm ,B_q‘

By ~elocting

o BaseBspmiy
0 < ,Jl S dscrjspm _q2
gglvﬁgnmp

We Cal W ie
plo + SpLZTH Zpy + |6 + well) € ~81(pRZTH Zp, + ||€ + wel?) + K|r]|

for k' — 3,53}, This completes tlie proof. @

Bounds for the penalty parameter

We now determiine modified bounds for the penalty parameter. We assume that the mul-
tiplier estiniates are obtained according to conditions C7-C9, given in Chapter 2. and in
addition we in nose aa extra condition on the choice of the initial working set made at eacl
iteration:

C13. The initial active set must be selected so that there exists an ¢’ > 0 such that if

[pell < ¢ then the active set at py is the initial active set.

From the definition of the search direction, pg, this condition implies that eventually py
must be the solition of the QP subproblem, and it must be determined in just one QP
iteration (no constraints added or deleted).

Define 1he auxiliary vector

wy = Z0g - ZTHp. (5.

o
(28
—_—

—

Property P4 i~ an immediate consequence of the following lemma:

Lemma 5.2.3. There cxists a value pp such that

o
(8%
(S

~—

(0, p) < —g(plj;{nkzkpzk + |6k + we, 1Y) (.2

fl)r‘ all [ /‘1“_
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Proof. From the expression for ¢(0) given in (3.6.2), we can write, using (5.2.1),

i

o'(0) = ptZTg + pI¥ Tg + e — ) — 26T(c - s) — plle - )2

-pzZ TH Zp, — })ZZ HYp, + pguvg + p)) g — Tqy Py

il

- /ITAZ[)Z - ;LTS —- ‘ZET((: - ) - p“C - s|)?

- 7Ta T[l )

il

|
'\
?:
N
"t

|
f
+
=
+
o~

isi
~
+
+
"E
N
ki‘

—uls = 26T = s) = plle - s|12,

where £ = 1~ A and b is defined from

S
i

16+ wlf* —~ pIY W H Zp, + AT - g)

0 if e+ wefl =0
b = 9
e+ w|?

(¢ + we) otherwise.

Consequently. 016 + w.) = 0. as |6 + well = 0 = py = 0.
If b and w. are redefined to be full m-vectors by giving the value zero to all components
corresponding to constraints not in the initial active set, we may rewrite the previous

equation as

o'(0) = ~p1/7’l/p — NIé+ w2 + bTw, + pd (ug—ZTAH/l) (b—)7Ts
+ (b= 26)1(c = s) = plle = s

The coudition to be satisfied can then be expressed as

bl +p(u —/Il/l)+(b—/t)qT b-26)1(c - s ) — plic - sjf?

Y

and a stronger condition on p is given by

sl
e
-~

ple — .~)’(r -8y > (h - ){) +h u .+ p/\‘: - 2'7.‘!7#) i b - ,'1)7‘5. (h.2.

A value gosuch that (5.2.3) holds for all p > pis

ol 2l max(0 Wl + pLliw, — ZTAT0 + (b - 0l
e =l I ' '

completing the result. 8
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We now prove property P4. As a consequence of assumption A3 and the definition of

w,, there exists a constant 3,.s such that
—l_l—}-,k-’—)y—“”—l < Bpes- (5.2.5)
From condition C10” and (5.2.5), we then have
P2 Zps + 16+ well® 2 Beenl| Zp2l® + B NV pylf? 2 min(Bls, Buast) Iplf?. (5.2.6)
Defining 3, = 1 min(dgd. 3,.1) we obtain property P4,
¢'(0) < —Bullpl®. (5:2.7)

Another result that is useful in the lemmas that follow is the boundedness of the auxiliary

variable b. From (5.2.5), assumptions A1-A2 and condition C10’, we have that

Yoyl
€ + wll

o)l < e+ w|| + \HZp, + ATu — g|| < N'. (5.2.8)

Regarding the penalty parameter, the same approach that was presented in the previous
chapter still applies in this case; that is, we define its value to satisfy property P4 and to be
small enough so that p/p is bounded. An example of a selection rule having these properties
is given in the next paragraph.

Let ¢ = ngZ.kTHkasz + |léx + we |I>. As in (4.3.11), we define the bound for the

penaity parameter by

- if ¢'(0,pe-1) < - 35
pr = { Pk-1 1 ¢( Pk 1)~ 2Pk (529)

max{pk,2pk-1) otherwise,

where py = 0 and gy is defined by (5.2.4).
The next result establishes property PS5.

Lemma 5.2.4. Assuming the bound given in (5.2.9) for the multipliers, for any iteration
ki in which the value of p is modified,

prllpil* < N

and

pkl‘lckl - sk(” <N,

for somc constant N.
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Proof. If the penalty parameter is increased only at a finite number of iterations, the result
follows from assumption A2, Lemma 2.4.1 and the boundedness of |ipg||. For the rest of
the proof we then assume that there exists an infinite sequence of iterations along which

the penalty pariameter is inereased without bound.

S0 = ply 4 (2A = 0 e = &) = pije = §))?

(VAN

~(% + 4 )(1)‘.15‘.2'1‘11 7:])2 + e+ 11'(‘]]2) + (22X — u + ;321')'{(( — ) = plle = .s||“’_

and if (05 > ~l‘(p£7:7‘11'/:p;/4 + I + w i) then. from the boundedness of the multipliers

and Jy.and {rom (5.2.6).

5 PO - 5 . \
e (X2 H Zp, + N6+ w ) > Nl

> ——— ‘, 5.2.1(
LTIy ST AT (5:2.10)

]1(' — N
From assumptions A1 and A2, Lemma 2,410 (5.2.8) and definition (5.2.1).
. 12 -
plle ~ sj|© <Ny,

and from (5.2.10) 1t follows that

pliplf* < V. (5.2.11)

Under the assnmption that pg, — . this result implies that {[pg || — 0.

We now show that for a large enough value of the penalty parameter pg it nust hold

that
mnx((). b‘{lu: i+ I)}]/‘\‘[(“..'Jkl ~ Z,f;.»l,{‘/lk,) + (b, — jy, )]skl) = (.
If [[pe,fl — 0. we can show that Jlby, || — 0. From condition C13 we must eventually have

wee, = 00 and so ||éy, + weg]) — 0. Furthermore, from Lemma 3.4.1 and condition C8 on

the multipliers. H.vlz;/zk‘ — gl — 0. From (5.2.8) we can write the bound
ibe Il < ik, + ekl + Boes(I1H e Zgpzi + 1Ak sk, = gxlD

and therefore we have ||bg || — 0.

Siwee |{hy |1 — 0. there exists an index K such that by, < gy, for all kb > K. (We
use strict complementarity at the solution.) Also, for &; large enongh it must hold that
Pkl < ¢ and from condition €13 in that iteration we must have w = 0, /lz;:h\.l Zh =

and weg, = 0. Henee,

bl gy + phe Cegry = Z8 AL 1) + (b = s si, = (b = g 'si, <00




O
[

Global convergence results 88

From this inequality and (5.2.4) it {ollows that for k; large enough, py, must satisfy

_ il + 201€k N

= (5.2.12
I TP )

In this case
pk(”(‘k: - S’H” <N,

and {5.2.10) implies
Pl ¥ < Naprllek, = sl < N,

proving the result. |

Proof of global convergence

The proof of global consergence follows along the same lines as in the previous chapter.
Theorem 5.2.1. The algorithm described in this chapter has the property that

klim Hpell = 0. (5.2.13)

Proof. Follows from the same arguments used in the proof of Theorem 4.3.1. §

Corollary 5.2.1.

lim |jzp — %] = 0.
k—no

Proof. The result follows immediately from Theorem 5.2.1 and Lemma 3.4.1. 1
Corollary 5.2.2.

Jim [ — X =o0.

Proof. The result follows from Lemma 3.7.1, given the results in Lemma 3.6.6 and Corol-

lary 5.2.1. &
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5.3. Rate of convergence

In this chapter we assume that our approximation to the Hessian is only accurate on the
null space of the active constraints. A consequence of the use of less precise information is
a degradation in the rate of convergence for the algorithm. We are now only able to show
that under condition C11” the algorithm converges two-step supeilinearly (as opposed to
the one-step superlinear convergence established in Chapter 1), The proof follows the same
general patlern preseuted i Chapter J.

We start by establishing property P7,

Lemma 5.3.1. For iterations ky in which the penalty parameter is incrcased, assuming an

infinite sequence of such iterations occurs in the algorithm,
lim pg,jipell? =0
0 Pe|iPrdl =
=~

and

[lim pi ek, = skl = 0.
s
Proof. l'or large enough g, from definition (5.2.4) and the remarks in Lemma 5.2.4,

plle = sl < 2(1b]l + 4{I€]I-

From Corollary 5.2.2, ||, || — 0. “AZ‘/UC‘ — ¢k )| — 0, and using Theorem 5.2.1 and Corol-

lary 5.2.1, from (5.2.8) and condition C13,

0 < lbic Il < llew + wer || + Hgﬁcﬂ‘ﬂl—l‘”klzhpzh + "Z(“kt = il — 0.
K+ Wek, ||
giving
[Ii_."o]opkt”% - =0
But (5.2.10) implies
lh_}g pkl”pkl”2 =0,

completing the proof. 8

Our goal is to prove a result similar to Theorem 4.4.1 for the algorithm introduced in
this chapter. Asin the previous chapter, some additional conditions need to be imposed. [t
was mentioned at the beginning of the chapter that our interest is to study the consequences
of approximating only the reduced Hessian. In this case, condition C11 cannot be enforced,

and it is replaced by
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C11’. Following Powell [Po78], we assume
IZE(H = W) Zipz, |l = olllpell)-

Note that this cendition, together with condition C10°, implies that for points close enough

to the solution we must have
T o Tur 1 2
pszk” kalk 2 ﬁﬁazHHkazk” .

As a consequence of the use of less restrictive conditions on Hy, condition C12 is no
longer adequate, and it also needs to be replaced. The new condition does not apply to the
multiplier estimates, which now are onlyv required to satisfy C7-C9; instead, it limits the

acceptable values for the penalty parameter py.

C12’. Wheu the iterates are close to the solution, the penalty parameter is chosen to be

“large enough™.

The following results will make clear what is a suitable lower bound for the penalty param-
oter.
If these conditions hold, using the previous results and Lemmas 3.8.2 to 4.4.3, we can

show that thie algorithin converges two-step superlinearly.

Theorem 5.3.1. There ezists a value p, such that if p, is selected satisfying p, > p, then

the algorithm converges two-step superlinearly.

Proof. We start by proving that if p; is large enough, condition (2.2.3) is satisfied for all
large k. In the rest of the proof we drop the subscript denoting the iteration number.
As in Byrd and Nocedal [BN88], we let

L(z, ), s) = F(z) — A(¢(z) - s). (5.3.1)
We can now use a Taylor series expansion to write
AL=1 =g'p - ATAp + 3p'W
= L(z+p.As)— L(z,\,8)=g'p— A Ap+ 3p Wp, (5.3.2)

where W = V2 L{z 4+ 0p,A,s)and 0 < 6 < 1.
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Rearranging terms,

AL

pIY g — ATV + p12Tg + 1pTZTW Zp, + (3Y Py + Zp2) WY py
pYTg - AT+ optZTg + (1 - 0)pl2T(W ~ H)Zp;

~ (L= ap3ZTHY py + (§Ypy + Zp2) WY py - (5

It

- 0)11£ZTlVZpZ.
Assume now that k is large enough so that ||W]| < 2||W?*|| = 8% where W* indicates the

Hessian of the Lagrangian function at the solution, and also that the bound pIZTW Zp, >
5333;1[[51)2({2 holds. We may rewrite condition C11” in the form

vy, ZE Wi = H) Zkpz, = wil| Zep 2, el

where wi — 0. Consequently

AL < pIY g - AT + 0pl27g - (3 = 0)4Bse = (1= ) 112p2 1
+ 53N ol + (1= o) Bn +w) + ) 1202yl

For k large enough, there exist positive constants a;, a; (e.g., take a; = 2(1 — o)d o + 7
and a3 = 3(3 — 0)3,.x), such that

AL < pIY Mg = AT + opiZ7g + 35V oyl + aall Zoo Y Py ll - a2l Zp2 1.

We now study the merit funciion (2.2.1) at @ = 1. We can write it as

o(1) = Lla + pAs) + (L@ +pou,s+9) = L(z + p,Avs)) + Splle(z + p) - s — g’

L(z, A 5) + (/\T(C(r+p)—s ~iTe(z +p) —s— ) + 3olle(z +p) - s = glf?
+pi¥ g~ ATA) + opl 27,

+ 18MY oyl + ar|| Zpa Y el — a2l Zp2 |

Using ci(z + p) — i — i = pTV72¢i(2;)p, where z; = = + 6;p for some 6; € [0, 1], we have
é(1)

0(0) + P (g — ATN) + 0pf2Tg + Mg — T&p"V2ei(z)p - 3olic - sl
F 305, (0 %ez0p) " + aull ZoallY oyl = a2l Zp: I + 38711V oy
< 0(0) + 09/(0) -

op¥ Ty~ a(2h = w)l(c — s) + Mg + pl¥Y T(g — ATX)
(1l _
V2

a)plle = sIi* + il Zp Y pyll = a3l|Zp2ll” + B7IY |2,

where we have made use of Lemma 3.8.2 and the facts that £ — 0 and the second derivatives

of the constraint functions are uniformly bounded. This result holds for large enough &

and positive constants aj, aj (again, take for example a} = 2a,, a = $az)
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Rewriting this expression, we get

o(1) = ¢(0) < a¢'(0) + (1 - e)pl¥T(g — ATy) - (1 - 20)€T(c - s) - (1 - 0)uTq
~(3 = a)plle = sl + ai| Zp ||||Y pyll - a4l Zp2I* + BXIIY py |l

From Lemma 1.4.3, condition C8 on the multipliers, and selecting k large enough so that

1lq = 0, it follows that
llg — ATull < Bllpl

for some constant 3. Finally, we can select p large enough so that for large k,
~(1 = 20)7(c = 8) = (3 = o)plle ~ s||* < —3(3 ~ o)plle - sl
for example, let p be larger than twice the bound given in (5.2.12). We then have
o(1) = 0(0) < 0¢'(0) = 3(3 ~ )plic = sl + a{ || Zp2||)Y Py || = a2l|Zp2i* + asf| Y py 1%,

where af = a| + 4 and a3 = §* + 4.

Assume that & is large enough so that p is obtained as the solution for the QP subprob-
lem, the correct active set has been identified and pe; < A; for all active constraints (this
follows from Lemma 3.8.3). From (5.2.5),

1Y Prll < BpesllEll < Bpeslle - sl
and
o(1) = 0(0) < 0¢'(0) + (a5 — 3(3 - 0)p) lle = s|1? + a{'| Zpallllc - sl = a4ll Zpa (%,

where af' = 3,c5a] and aj = Bpcsaa.

From the arithmetic mean/geometric mean inequality,

am2
a|Zpslllle - il < & (a2l Zpall® + =2-le - sII*). (5:33)
2
we finally obtain
1, 2 ' ‘1'1"2 1 2
o(1) - ¢(0) < 0¢'(0) - 3a5]|Zp.||* + (aa + o 3G - a)p)llc - s||*. (5.3.4)
2

If p is chosen so that
5> dasas + 2ay"?
= (1-20)d)
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then the step of a = 1 will satisfy condition (2.2.3).

Finallv. applving Theorem 1 from Powell [Po78], we obtain the desired convergence
result. B

Most ol the proof for the previous theorem is devoted to showing that a unit steplength
is eventually acceptable if the penalty parameter is sufficiently large. Clearly, the proof
given here still holds for the algorithm presented in Chapter 1, aud this gives a second set
of alternative conditions for superlinear convergence, where the condition on the multiplier

estimiate C12 is replaced by a condition on the penalty parameter C12°.

5.4. Summary

In this cliapter we have studied an algorithm similar to the one preseuted in Chapter -, but
where the conditions on the approximation to the Hessian have been relaxed, so that now
only the approximation to the reduced Hessian is required to be positive definite.

The results obtained have been:

o Under conditions C1 C9 on the search direction and multiplier estimate, and con-
dition €10’ on the approximation to the reduced Hessian, if the approximation for
the rest of the Hessian is assumed to be such that H is positive definite, then the

algoritling is globally converge nt.

o An alternative algorithm has also been shown to be globally convergent, where no
assumption is made about the Hessian approximation outside the null space of the

active constraints, but requiring the additional condition:

C13. the initial active set must be selected so that there exists an ¢’ > 0 such that

if Jlpe]] < €”, then the active set at py is the initial active set.

e Finallv, we have proved that the algorithm is two-step superlincarly convergent if in

addition the following conditions are satisfied:

Cr1’. |21 = W Zipa |l = olllpkl)-

C12°. When the iterates are close to the solution, the penalty parameter is chosen to

be large enough.

Note that when no conditions are required on the approximation to the Hessian on

subspaces other than the null space of the active constraints, the algorithm leaves open the
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possibility of using an approximation scheme satisfying condition C11 from the previous
chapter (instead of condition C11’). This would allow the algorithm to attain a one-step

superlinear rate of convergence.




Chapter 6

Exact Second Derivatives

Ihis chapter considers a third variant of the framework algorithne presented e Chapter
20 Neatu, o partiaf solution for the QF subproblem is used as the scarch direction, but in

this case the Hesstan approximation flg is taken to be the exact Hesstan of the Lagrangian

finction ar the fast iterate. that is
_ o2 2 2
Hy = Vi L(re. Ay) = VOF(rg) = X, 0, Vo).

where now /. and even the reduced Hessian Z{[{kzk. can be indefinite.

There are nnmerous theoretical and practical benefits deriving from the explicit use of
second derivatives. For example, it will be seen in this chapter how to define an algorithm
generating o sequence that converges to a second-order KK'T point. Also, in practice it has
been observed that second-derivative methods usually converge in much fewer iterations
than those required by first-order methods. However, the use of second derivatives presents a
number of teclimical difficulties, all of which stem from the loss of control over the properties
of Hi. In order to reap all the benefits from the availability of second derivatives, we need
to redefine the way the search direction is obtained. In all other respects the baste priaciples
introduced in Chapter 2 will still be preserved.

The next section presents the definition of the incompiete solution for the QP subprob-
lems, to he nsed as the search direction in each iteration. The rest of the chapter proves
glubal convergence for the algorithm, and shows that under mild conditions the algorithm

converges quadratically.
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6.1. The - ‘arch direction

The definition of the search direction given in Chapter 2 needs to be modified for the
algorithm presented in this chapter, to take into account the possible lack of convexity
in the subproblems, fiuplving the possible indefiniteness of H; and rank-deficiency in the
reduced Hessians.

In the cuse when the Hessian is indefinite, the descent directions that can be obtained
from the QP subproblems may no longer provide enough descent to guarantee the conver-
gence of the algorithm: that is. the quauntities 0} (0) may no longer be sufficiently negative
to ensure that op — oy satisfies the condition used in the proofs of Theorems 4.3.1 and
5.2.10 In this section we present a procedure to generate search directions that either give
sufficient descent. or are directions of negative curvature (satisfying ])ZII;‘.])‘. < 0) Allowing
a sufficient decrease jn the value of the merit function to ensure convergence.

The searclh direction pg is defined by the following steps:

(1) Obtain a feasible initial point py for the QP subproblem such that conditions (2.2.6)

and (2.2.7) are satisfied.

(i} Solve the QP subproblem until a stationary point p is found, or until a direction of
infinite descent d is obtained. The convergence results presented in this chapter do
not assiwue the use of any specific QP algorithm, but the following conditions must

be satisfied by the method selected.

o [t must be an active-set algorithm. taking feasible descent steps in each iteration.
It steps having a positive directional derivative for a = 0 are taken, the total

descent must be uniformly bounded away from zero.

e [t st be able to find a stationary point (or a direction of infinite descent) in a

mnther of iterations uniformly bounded by a function of the size of the problem.

o Fach QP ireration must produce a minimum descent, unless we are at a stationary
noint for the QP subproblem. To be more precise, let p denote any intermediate
point along the solution of the QP subproblem and let d be the QP scarch
direction at p; also let o indicate the step taken from p along d, obtained as
the minimum of the steps to the vnidimensional minimizer, the nearest inactive
coustraint and a specified upper bound, in the same spirit as in the definition of

o given in condition C3. Finally, let gg denote the projection of ¢ + Hp onto
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tlie null space of the active QP constraints at p. We require that d satisfies the

following condition:
v(p) = vip + ad)
fnd

; 15 some positive constant.

> Bepallgells {6.1.1)

where J“n
The reason for this condition is that it prevents the algorithm from taking steps
that give arbitrarily small descent unless ||gg|| is small, that is, the point p is

close to being a QP stationary point,
it Define pfrom poor d as follows,

{a) Wadirection of infinite descent d satisfving (6.1.1) is obtained at a point p along

the solution of the QP subproblem, define
p=p+ad

where oo > 0 ds chosen so that ||p)| is uniformly bounded above and below.

(b 10 p s a second-order KK point for the QP subproblem, let

P = p.
{c) Otherwise, select p by computing a direction d and a steplength o satisfving

conditions C1-C8.

tivi The following condition is introduced to identify the circ-mstances under which near
singularity in the reduced Hessian may be a problem:
Cl4. 7] < ¢p.and

vipe) ~ v(p)

o —al ="

If C14 holds, obtain an estimate for the active set at the current point, 1y, and
compute a direction p by taking a step ad from pg satisfving C1 C6. If no feasible

step satisfving these conditions exists, let p = py.
{v) Select the search direction poas

pooif v(p) < we(p), C14 does not hold, or p = py

I

p otherwise.
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Several reniarks are in order regarding the definition of p. Condition (6.1.1) could be
replaced by the aternative condition

T+ d
(g + Hp)ll—ld_H < Bgpallgells

which may provide a better expression for the stated goal of linking the lack of descent
associated with the direction d and the proximity to a QP stationary point: but this is
achieved at the expense of limiting the choice in the selection of directions of negative
curvature.

In point tivyitis required that the correct active set at a nearby stationary point should
be identified. Under condition (6.1.1), an estimate for this active set having the desired
properties is given by the QP active set at the initial point for the first finite QP step {the
first step that is bounded away from zero).

Finally, condition C5 requires the computation of a direction of negative curvature. In
the case wlen o is small this is straightforward. For the large-scale case. efficient methods
are known when the reduced Hessian is not too large. Although some work has been
carried out for problems of arbitrary size, see for example Conn and Gould [CGR4], such
methods are not very eificient. Qur hope is that satisfactory methods for computing feasible
directions of negative curvature for arbitrarily large problems will be developed in the near
future. If a direction of negative curvature is not determined. the proofs would still hold
if we characterize solution points to be first-order KKT points for the problem (instead of

second-order KK'T' points).

Properties of the search direction

As in the previous chapters, the first result required for the convergence proof is 1o show
that if {[p]| i> small enough. the correct active set must have been identified. We start by

introducing 11 ‘olowin, constant, implied by the non-singularity assumption A6:

Beoqr is 2 5 - 2 lower bound for the smallest eigenvalue of the reduced Hessian of the

Lagrangics v ction at all second-order KKT points for the NLP problem in .

The ol ving lemma establishes property P1 for this algorithm.

Lemma 6.1.1. There erists an ¢ > 0 such that ||p|| < ¢ tmplics that p was obtained as a

second-order WK point of the QP subproblem and the correet active sct has beer identificd.
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Proof. The correct identification of the active set follows from strict complementority at
the ~olutivi point {see proof for Lemima 1.3.2).

Assume that the lemma does not hold, in the sense that there exists a sequence {r;}
such that oy — 2% and {|pe]] — 0. where pi denotes the search direction obtained for the
QP subproblem at ¢y in the form described in the previous section, but pi has not been
obtained as a second-order KKT point for the QP subproblem.

It pi = pioaud ||pi]] > ¢, for an infinite subsequence and some ¢; > 0, then as pg must
be feasible. we must have Jleg || — 0. Also. as vx(px) — 0. we must have vy (pe) — 0.
From this and condition (6.1.1) it must follow that r* js a stationary point for the NLP
problem, given that it is feasible and in the QP subproblem we have no descent when taking
a nonzero step from the origin to a stationary point.

If 2" is a second-order KKT point. eventually px = pi, and pi = py. If 27 is a stationary
point but uot a sccond-order KKT point. for ||y — r*|| small enough we can find a direction
diand a steplength agosuch that p, + agdy is feasible, as |, || — 0 and the information

used is asviiptotically correct. From the bound given in (4.3.1) and condition C1.

(g Z %3; ||([kl| 2 ‘jlnrb

implving that

1Pl = liPko + rdill > 53530

However, this contradicts our hypothesis.

Assume now that |p]] — 0. From condition C6. this implies ||pi|] — 0. and from
Lemma 381 we must have that r¥ is a stationary point. Suppose ¥ is a second-order
KKT point. Then strict complementarity at r* and the fact that |{pc]] — 0 imply that
the correct active set is eventually identified. Hence, from the positive definiteness of the
reduced Hessian at o*, we must have that for large enough k, pi is a second-order KKT
point for the QP subproblem.

If #* is a stationary point, but not a second-order KK'T point, using the bounds given
in Section 1.3 and assuming ||ry — 2¥|| to be small enough. we can find a direction dy and
a steplength oy such that

gy > %,};, ”(IA” 2 Sind,

implving that

1pell = b+ axedel] > 332 900
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Apain, this is a contradiction. @#

As in previous chapters, the proof proceeds by showing that property P3 holds for
this algorithm, that is, the search direction computed according to the rules introduced in
Section 6.1 satisfies a descent condition.

In order to prove P3, we need a preliminary result. In Chapters 4 and 5 it was possible
to show that

¥e(Pro ) — Vi(Pk) — 0 = |lpky — il — 0.

using the positive definiteness of Hy, or of Z[l{ka at least. This argument is not valid in
this case. and we give an alternative proof for the result in the next lemmas.

In the following lemmas the notation {y, }%._; is used to represent a subsequence from
the sequence of iterates. {y,} C {zix}. The symbol ¢,, denotes the vector c(ym). Hm
corresponds to the Hessian of the Lagrangian function at y.,, and p,, indicates the search

direction obtained at y,,.

Lemma 6.1.2. If the convergent sequence {ym}, ym — y*. satisfies ||c;|| — 0, it must hold
that

wm(pm) —-0= “pm” — 0,

where py, denotes the search direction obtained from the process described above. Also, y*

must be a stationary point of the NLP problem.

Proof. Assume that the lemma does not hold, i.e., that ¥ (pm) — 0 but ||pnfl > 6 > 0
for all m.

Since the norm of the initial QP point goes to zero (||pm,|| — 0), condition C14 must
hold for large enough m.

To show that y* is a stationary point. take a subsequence along which the number of
QP steps is fixed (it is bounded), and all intermediate steps converge to limit points; in the
limit all steps give zero descent, as ¥'m(pm) — 0, implying that all intermediate points, and
in particular the origin, must be stationary points from condition (6.1.1).

Assume that y* is a second-order KKT point, and that a set of limit points for in-
termediate steps has been obtained as indicated in the previous paragraph. For the first
nonzero step from the origin d*, it must hold that ||d}|| > 0. as otherwise we would have
&7 72T 74 4} = 0, contradicting assumption A6. But then ¢*Td* > 0, violating the first

condition imposed on the QP solution method.
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It follows that at y* there exists either a direction of negative curvature or a negative
multiplier. Since ji,, — p* (the Jacobian of the active constraints at y* has full rank), then

from the bounds introduced in (4.3.1) and Lemma 3.3.2, it follows for m large enough that

m m

1.2 4T 1302 3
Uk ) < 3¢ d llmdml < —572'9/}; /31,,55;;11
when there exists a direction of negative curvature, or
_ 1 ] 1,
o (Do) < "anll»‘—'m(o)l < —Tgfj_;ﬁdsrdspm

when there exists a negative multiplier.
Consequently, in either case Uy (P ) is bounded away from zero, which contradicts our

assumption. 1

Lemma 6.1.3. There exists a constant ¢, > 0 such that for any scquence {y,} satisfying

Heodl < €y we must have

(-'m(l)mo) - wm(pm) - 0= ”prno - ]’m“ — 0.

Proof. Assume that the result does not hold. Consider any sequence {¢;}. such that ¢; — 0

and ¢, < ¢;. For cach ¢;, we can construct a sequence {y}} C {ym} such that ||c§“|| <, for

{

J(pg) — 0 but HI’;O - pgll > é; for some 6; > 0

all 1. yﬁ — y} as I — x for all j. t."*g(pljo) -
for all . Finally. we can assume that y: — y*.

From the previous properties, condition C14 must hold eventually for any of the se-
quences. Seleet one element from each sequence yﬁ = y,, such that for that point C14 is
satisfied and y, — y*. Then from the previous lemma we must have that p, — 0 and y* is
a stationary point of the problem.

Using the same arguments as in Lemma 6.1.2, if y* is not a second-order KKT point,
then at y* we will have either a direction of negative curvature or a negative multiplier,
and since g, — p* (the Jacobian at y* has full rank from assumption A3), and a similar

property holds for the reduced Hessian, we must have that
i H R @,
L‘J(an ) - L‘J(I)J) 2 Tz‘/j; ""n(zﬁ(isrdspm- dg',‘jl,dspn )~

contradicting our assurmption.
If y* is a second-order KK'T point, then consider the sequence {yj} For this sequence
and for j large enough, p’:o (the initial point for the QP subproblem) must be a secoud-

order KKT point. This follows from condition (6.1.1), implying that all p* must be QP
i g Jo
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stationary points, and from l]ijH — 0, the identification of the correct active set from
strict complementarity at y* and assumption A6. But from arguments used in the previous
Jemma, the fact that we have no descent from pjo implies that the reduced Hessian must
be singular at p° for large enough j, and the reduced Hessian must also be singular at Tl
contradicting assumption A6. @

We can now prove property P3 for the algorithin.
Lemma 6.1.4. There exist constants 3y > 0 and 3y > 0 such that

glpe + dplHipe < =3 \ll® + 3allnell- (6.1.2)

Proof. Detine o, satisfyving ¢ > ¢,; > 0. where € i5 the value from Lemma 6.1.1, and such
that ||ptl < ¢, tiplies that p is a second-order KK'T point. the correct active set has been
identitied. and the smallest eigenvalue for the reduced Hessian is greater than %,‘55,.”.

Also. from Lemma 6.1.3, let & > 0 be the value such that, if |le7]] < ¢..
o = pll > Jeu = vipo) — v(p) > 0.
Define

é
2(‘3nmg + ﬂnm”ﬁnmﬁ).

¢ =

having the property that ||polf < € implies [¢(po)] < 14. Select

/

. (1 € CH
€ = min( 1.¢€c. . )
Bpes 28pes

From condition (2.2.6) and assumption A2, there exists a constant 3,m,, such that

”p()“ < PC“E“ < f/jnmp-
One of the following conditions must hold:

o ||ril > ¢y. From the boundedness of ||pof] we can write

o(p) = g p 4 pTHP < e(p0) < FnpBrmg + 3Buntt Bump)

3nmp

IN

=l + (31 Brmp + 2Bnmg + Brmtt Bamp)|I 71l

€1
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o jirlf < o and [Ipll > ¢y This implies |[po]] < Hpesti < € and [U(po)] < %é. Also,
o — il > € = 30560 2 %(,,. and

é
2,32

nmp

2.

vipy) = vipr > & = p(p)< ——%6 = p)<

o {[r|l < ¢y and [{p]] < ¢;. In this case, as p is a second-order KKT point for the QP
subproblem.

.’/Tl’ + PT”P = —('T/‘ < Bumalle™ I € Bamadlrll-
Using the notation Ap = p — py.

piHp = pgll po + 23p T Hpy + ApTHAp
_-f.':mll ijp;””lz - 2dnm}/dspr“"H“A])” + %,-jel'”“Ap”'z'

v

and from the arithmetic mean/geometric mean inequality.

R . AspednmH Fsu :
2l Apl € =B )+ =)
BsuH 4fispcr'inmll

we obtain
.. , . 483nmH
[)1[{}) > %,35,'11{131)“2 - 5/37177111"3.3pc(1 + dn—n;[) Hr”2
MSsu
The inequalities
PP < 1A + gllpoll® + 1 3pHpoll < I1ARIP + Nlpol)?
imply that we can write
PP 2 EBenlpl? = 3lr))
where
4BnmH
g oa32 . nm 1,
3 = B (B (14 S ) + L)
Putting all these results together, we have

e(p) < Fnllrfl = %]'T”P < _T](‘;/’svH“])Hz + (’%,‘7’1 + STl

completing the proof. §
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6.2. Definition of the linesearch

As a consequence of the way we have defined the matrices /. and the incomplete solutions
for the QP subproblems in this chapter, the search direction p; may no longer be a descent
direction. but rather a direction of negative curvature. The linesearch model presonted in
the previous chapters is not adequate for this case. We can no longer be assured that the
directional derivative at the beginning of the linesearch is bounded by a multiple of ||pc||*.
The structure of the global convergence proof would then fail to hold. We need to modify
the linesearch model introduced in Chapter 2, and we will do so according to the ideas
introduced in McCormick [McC77]. and further developed in Moré and Sorensen [MS&4].

The problem considered in [MS&.4] is that of minimizing an unconstrained function when
in each iteration a direction of descent v, or a direction of negative curvature w, or both,
are available. The search is carried out along the curve C = {z(a): 2(a) = z + aw + o?v}.
and the termination conditions when the direction of negative curvature is available are
specified in terms of the curvature at the initial point. In our case we generate only one
search direction py for the original variables z in each iteration, but the search on the merit
function is made not only in the space of the original variables, but also in the space of the
Lagrange multipliers and the slack variables. Whenever we make use of p; as a direction of
negative curvature. we need to define not just one scarch direction but both a direction of
descent and a direction of negative curvature in this expanded space. If pi can be treated as
a direction of descent, we prefer to avoid the complications associated with the curvilinear
search by reverting to the linesearch model introduced in Chapter 2.

The next paragraphs present the definitions of the expanded directions for the curvilinear
search. To motivate them, we start by studying the form of the derivatives for the merit
function alone the curve C'. We define the unidimensional merit function along the curve

of search, o' . starting from the point y and moving along the vectors

v w
y=1| x|, v=1 t; |, w=| t; |, (6.2.1)
s 73] Ug
as
o (a) = Ly + v+ aw) = F(z,) — 67 («) + po3(a),
where

éf () = /\Z(C(IG) - s(,).
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¢5(a) = glle(za) ~ sall*.

To simplify the expressions that appear in the analysis of the different functions related

to the merit function, we introduce the notation
Ioa =& +a2v + aw,
Ao = A+ a?ty + aty,
So = S+ 0%u; + au,.

In the case when a normal linesearch is performed, the value of the merit function along
the line of search will be denoted by ¢~. This linesearch can be viewed as a particular case
of the curvilinear search, when w = 0, and in fact for the definitions of the vectors ¢; and
u, given in this section the form of the search directions is identical if we let w = 0, but it
must be noted that the termination conditions are different in the two cases.

Our interest in what follows is to assign values to u; and t; in terms of the known
quantities at the current point; the definitions for v and w will be specified later as a
function of the properties of the search direction pg. In order to identify satisfactory values
for these vectors in the curvilinear search, we need to study the form of the first and second
derivatives of the merit function at zero, as these are the values that will be used in the
termination criteria. We start by forming the corresponding derivatives at any point. The
first derivative is given by

¢ (@) = VF(z4)(2av + w) - 6§ (a) + pg5 (),
where

o () = (2aty + )7 (e(za) = 50) + AL Ve(za)(20v +w) ~ 20w — uz)
and
¢§'(a) = (c(za) - SQ)T(VC(IQ)(iZav + w) - 20u; — uz).
For the second derivative we have
6" () = (200 + w) V2 F(2,)(2av + w) + 2V F(z4)Tv — ¢ (a) + pé§ (),
wlere

d)f”((r) = 2(2at; + tz)T(VC(l‘o,)(2av +w) - 2au, - ug) + 2t17'(c(10) - Sa)
+ )‘Z(zvc(la)v - 2u|) + YA, (2av + w)TV2e,(z4)(200 + )
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and

T
0% () = ||[Ve(za)(2av + w) - 20u; — uf® + (c(xa) - sa) (2Vc(:ro,)v - 2u1)
+ 3 (Ci(l'a) -~ Sa.)(Qav + w)TVZCg(Ia)(2av + w).

As we mentioned earlier, we are interested in studying the values of these derivatives
when a = 0. given that the termination criteria for the linesearch make use of these values;

their form will determine the definition of u;, ¢;. For the first derivative we have
6 (0) = gTw — td(c - 8) = AT(Aw — ug) + p(c ~ &) Aw — uy),
and letting
uy = Aw, t =0, (6.2.2)

we obtain

#°'(0) = gTw. (6.2.3)
For the second derivative,
o (0) = wViFw + 2Ty — 2tT(e — s) - 2T Aw ~ up) — 22T(Av — )
+ ) (p(c,- ~8i)— /\,‘) wIV2e;w + pl|Aw — ua||? + 2p(c — s)T(Av — uy),
and after replacing the expressions for u; and t;, we obtain
¢<"(0) = wIV Fw + 2¢Tv — 2t’{(c -38)+ 2(p(c ~-8) - /\)T(Av —uy)
+ 3 (p(c,- - 8)— Ag)wTvzciw.
Define
U= Av+c—-s+w, L=p-—A, (6.2.4)
for some vector w to be defined later on, implying
¢°"(0) = wTV2Lw + 29™v + 22X - p)T{c - 5) - 2p]jc — s|)?
+ 2wT(A - plc— s)) + ip(ei = 8)wTView. (6.2.5)
To make sure that the last terms in (6.2.5) take acceptable values, we select w to satisfy

0 if (¢; - s,-)wTV%.-w <0, |wTV2c,-w| < e — s,
or 3 (e — s;)wTVQC,-w < le = sll%
(¢; — 8;)wTV2e;w

otherwise.
Ai — plc; — 8;)

_P
2
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A, = ple, = »,) is very small or zero, and the first set of conditions does not apply, this
detinition is unsatisfactory because w; is either undefined or unacceptably large. To avoid
this problem, we modify the current value of p, attempting to attain two goals: we want
the new value for p, say p. to be bounded by a finite multiple of its existing value, and we

want < to be bounded by a multiple of [jw||?. We start by imposing the following condition:

p C;— 8§ . .
- ——— <Kk (6.2.6)
2 /\i _p(Cx - Sl)

for some A" > 1. Note that this bound implies that our second goal. |jw|| = O(|lw||?). is

attained.

We now show that our first goal can also be achieved. If the previous condition is not

satisfied for tie carrent value of p, then we must have
a <= (6.2.7)
_— -, ).2.1
ple; — s;) 2h

and for that to hold it must also be true that A;(¢; — s;) > 0, so we can write

A 2K << A 2K (6.2.8)
- 2h4+1°° c;—s; 2 -1 s
but if p is in this interval, then
2Hh 41 A 2K
- > - . 6.2.9
ok 177 6 - 2k — 1 (6:23)
and in general there exists a value
2K+ 1Y
; T, 6.2.10
nE[m(Ql\._l)p] (6.2.10)

for which the desired bound on w holds.

With this definition,

—2pllc — s||* + 'Zwr(/\ - ple - s)) + Y iplei = )2 < —plle = s|?

Negative curvature and descent

We now present the rules to decide how to select the linesearch model used in each iteration,
and if the curvilinear search is to be used, how to define the values for v and w. Once the

search direction p has been computed, let
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a) =0 w=yp if pTHp < 29™p <0,
b)Y e=(l+y)p.w=—-yp ifplHp<0, ¢"p>0and - pTHp > k¢Tp,
¢) use a normal linesearch  otherwise,

where & 15 a constant satisfying 0 < k < 1, and v is defined from

27+1)
k=2 .
(272~1

The convergence proofs make use of several properties that follow from the definitions

of v and w. If we define

p

2¢Tv + wTHw for cases a) and b),
29Tp for case ),

then for the different cases,
a) [y =piHp < g'p+ 3pTHp,
b) fu=200+ gTp+ v Hp < gTp~ (v* = DpTHp+ vpTHp = ¢"p + 1p"Hp,
o) fu=2"p<gp+3pTHp  ifgTp<pTHp,
Sy =290 <290+ pTHp il 0 < pTHp < 297,
= 20"p < 29Tp + 2—3F(.kng +pTHp) = ;%;(Qg'[p + pTHp) otherwise.

I

From (6.1.2) and these results,

4
2-k

Sy < min( =3l + Ballrll 5 (= Bullpl® + BalirlD) < =Bullpll® + 4Ballrll.  (6.2.11)

A second useful inequality is
f» < 297p, (6.2.12)

following from one of the alternative cases
a) [, =pTHp < 297p,
by fp =207+ Dg'p+ v pTHp < (27 + 1) — ky?)gp = $(2 - k)g"p < 2¢7p,
c) Jp

Another interesting property of the previous definition is given in the next lemma.

i

297p.
Lemma 6.2.1. There exists an €4 > 0 such that if ||pk|| < €4, then a normal linesearch is
used.

Proof. Assume that the lemma does not hold. Then there exists a sequence {z;}. and

an associated sequence of search directions {pi}, such that py — 0 and p; satisfies the
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conditions for cases a) or b). Without loss of generality, assume that the sequence {ry} is

.. . * [ . .
convergent, and let the limit point be 27, a second-order KK'T' point for problem NLP, from
Lemma 6.1.1.

Define a new sequence of vectors {vi} from

Dk

= ——

T
and select a4 convergent subsequence where either case a) or case b) holds for all k. (The
index & will also be used to denote the elements in the subsequence.) Let v* be the limit
point for the subsequence.

From the conditions for cases a) and b),
‘ T[I~ >k ! | = TH >k I
1Pt Piy 2 ‘.’lkl’k f]’k kl’ki = lf/kl/k|~

. . . .. . *T 4 * . .
and in the fhn y'lw* = 0. But this implies A*74%% = 0. and from strict complementarity

*

U5 N W also have
vk p[/luu- < 0= Tt <0,

but this contradicts the fact that we must have a strong minimizer. from assumption A6,
proving the result.
This result allows w. to define the following constant. From Lemmas 6.1.1 and 3.4.1.

assmmption A6 and Lemma 6.2.1.

5 is @ positive constant such that |ipef] < ¢, implies that pe has been obtained as a second-
order KK poiut, the correct active set has been identified. the smallest eigenvalue of

the reduced Hessian is at least %.}_ﬂ,/,-, and a normal linesearch is used.

Fiually, note that for cases a) and b), o”’(()) < 0.

Linesearch termination

When we use the curvilinear search, it may no longer he possible to satisfy the termination
conditions given for the normal linesearch in Chapter 2, (2.2.3) and (2.2.4): consequently,
they need 1o be replaced. Satisfactory termination criteria of a similar type to those given

i Chapter 2 are now presented. A chieck is made whether the condition

o (1) < &7 (0) + Sao"(0) (6.2.13)
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s satisfied by the step o — 1. If not. then a value a € (0, 1) satisfying

L1t

2
o () < 0°(0) + 050 (0) (6.2.14a)

G
i}
B
\4

> ,,(o"’(()) + n¢>"”(0)) (6.2.1.1b)

for 1> 5 > a0 > 0and 2 > a.is computed as the step length. The existence of a value
~atisfviug (6.2.14) will be shown in Lemma 6.3.6.
From the definitions of v and w, when case b) applies the form of the step in the original

variables i eiven by of (1 + v ja = 3)p. A consequence of this expression is that for a value

we oot o chanee in the ¢ ovariables. Though this step has no effect on the convergence
proofs isinee we are sl making finite changes in the other vaniables), such a step may
be considered nsatisfactory from a practical point of view. We present an alternative
honesearclh cniterion for this case,

[t

~
!

a =

2144y
a2 04 Lolds, then let o = 15 otherwise, check condition (6.2.14a) for a = a:

-
Py
"

o () < o (0) + n(—;—o" (0). (6.2.15)

I this condivion is not satisfied either, compute a value o € (0.a) satisfving (6.2.1 1.

6.3. Definition and properties of the penalty parameter

Lo guarantec convergence of the algonth, each step must satisfy a sufficient descent con-
dition. This taplies the need to select the penalty parameter in such a way that the initial
derivatives of the merit function (the quantities bounding the descent achieved in the line-
search) tuke acceptable values, and in particular, property P4 (suitably extended) holds for
the aleortl . both when the normal linesearch and when the curvilinear search are nsed.
The next paragraphs indicate a wayv in which this can be done for both cases. and the rest

of the section proseuts the properties associated with this definition.
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Definition of the penalty parameter

When tryiug to show that property P4 holds for this algorithm, we face an immediate
complication. There is no longer any quantity readily available that provides a good measure
for the bound J,||pi||* on the initial derivatives for the linesearch. For example, the values
used in Chapters 4 and 5, pTHp and pTZTH Zp, + ||¢ + w||? respectively, may not even be
positive. Cousequently, we introduce in this section a definition of p; based on the value of
the penalty parameter that makes the corresponding derivatives zero, with the addition of
adequate safesuards.

et

I 2ol = ple = )+ T opte, — 5,)w!C2%w  for the curvilinear search,

T =
I 0 for the normal linesearch;

and

Jo = o+ 2020 = )l (c - s).

From (6G.2.11).

Lo < = APl + Falle - s

where we can assume that 3, > 4.
Define pf from

2 v

— 02
p= T
——~—  otherwise.
lJe = s||?
Let p~ denote the value of the penalty parameter at the previous iteration. If p~ = 0 and

Py <0, replace f, in the previous definition by f, 4 8 ||pl|*, where 34 > 0 is some specified
parameter, and recompute the value for py accordingly.

Let

0 = el + (= )Te = (p + Zp2) HY py,
{ 0 if ||¢]] = 0 or the constraint is not active,
b = 9

————¢; otherwise.

Il
where [ denotes the QP multipliers at the solution of the QP subproblem, if available. or

the multiplier estimate otherwise.
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From the non-singularity of the Jacobian at any limit point of the sequence {z\} (as-
sumption A3), there exists a constant J,, 4 > 0 such that

Y ..
AY py > Beall Yoyl = ¥ el !

P
> — < =N.
fletl

[

Hsu A

It follows that b satisfies
6] < el + il = il + N[ HEp + Zp2)i
This implies the boundedness of ||b]| and also from Lemma 3.4.1 and condition C8,
llpell — 0 = {6kl — ©.

Define py from

2£ "
H if $30°(0,p7) > —p3ZTH Zp, - |\2|?
Cc —
py = or ¢V'(0,p7) > ~pLZTH Zp, ~ ||él)?,
0 otherwise.

To define a bound for the penalty parameter, we introduce a positive constant 3y, and

let

p=

{ max(py.p2) if ||pll < Ben and e = s|| > ||p|I%,

max{p;.0)  otherwise.

Also, fet

i

Pm

pmjn lfp- - 03
2p~  otherwise.

Finally, the bound p is given by

20 if2p> pm,
P=ES P i pm 220> p7,
p- ifp™ > 2p.

From this definition it immediately follows that p > 2p, and if 5 > 0 then p > pnin.

Properties of the penalty parameter

From the previous definition we can show that property P4 holds for the algorithne.
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Lemma 6.3.1. Forpe > 0 defineu as above, there exists a constant 3,; > 0 such that either

O;\Z‘”(O-P) —%311”1)’:“2‘ or

<
) = , (6.3.1)
o' (0.,p) < =Bullpell®,

for all p > py.

Proof. Define a value ¢’ such that min(8,,,¢,) > ¢ > 0, and whenever ||pif] < ¢ we have
(st + bi)Fsr > 0. Consider the following cases:
o If |je— =

of”(o.m = fo+ T =2p|le = s|* < f, < =35ilIplI%
o™'(0,p) = 3£, — plle — sl < Lf, < —Laullpl.

3 .
o Iflje — & > ﬁ”p]lz and ||p|| > €, then il 7 > 0, from p > py,
72

fo+ T = 2pllc = sli* < =4plle - s,

implying

NP I, e o2 e 1 Y 2
6" (0.4) € ~%puialle = s|I° < pmm(%) Pl

, . oh
0% (0,5) < ~Lpmsalle = s|I? < 2,p,.,.n(m,) lplf?.
If p =0,
6°"(0,p) < —Bullpll*,
o™'(0.p) < —18ulIpll1%.

o If flc — s|| > ==pl|* and jlpll < ¢, from |[[p|| < €, we must have used the normal

2; 3’
linesearch, and from the definition of p it must hold that p > max(p~, p;).

o™'(0.p) = —pTHp - iTe + (22X = ) (e = 5) = plle - s)?
= —psZTH Zps ~ &> = (26 +6) (c = s) = (+ 0)'s = plle - s
< =23 2TH Zp, - 2))él)?
< —d, |l (6.3.2)
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implying that property P4 holds. &
Following the procedure outlined in Chapter 3 for the global convergence proof, the next
step is to establish bounds for the rate of growth of the penalty parameter. The next lemma

shows that property P5 holds for this algorithm.
Lemma 6.3.2. For any iteration k; in which the value of p is modified,

prlpe > < N
and
Ph“"k. - Skl“ S N,

for some constant N

Proof. \We show first that for some positive constant A, whenever the value of p has to be
modified.

lle = sll > K[ip|f*. (6.3.3)

Considering the cases introduced in the last lemma, whenever

B\ 2
> 2
> 55l

the result holds immediately. If this is not the case, assuming that 85 > 3; + 3, it follows

lle = sf

that p = max(p,.0) and from
fo < =BuplI* + Bille = sl < =Bylle — sl <0,

we must have py €0 and p is not modified.
Also,
palle = sl = 1|26 + b]] < Ny,

and

: . , . Bh-8
lle = s S 4y Al < 3y = AP + Ble = sl < (35 + 22222 e - ol

implyviug

mile = sl < Nz

H]I(l

flle = sl <N,
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but from |j¢ ~ ]| > K||p||? it follows that
Allpll* < N,

completing the desired result, 1§

The proof now proceeds along the same lines as those given in Chapter 3. If the normal
linesearch is used, for the corresponding iterations the results given in Lemmas 3.6.1 to
3.6.6 hold as given in Chapter 3. If the curvilinear search is used, it is necessary to modify

the proofs for some of these results, as follows.
Lemma 6.3.3. At any iteration where p has to be modified,
Tii < Niflpll* + Nalle - s|l,

where i denotes the QP multipliers, and Ny and Ny are positive constants.

Proof. If ||p]| > ¢, the result follows from assumptions A2 and A3. If ||p|| < €. then p

has been ohtained as the solution for the QP subproblem, and it satisfies

9"+ pTHp = =74

Furthermore, a normal linesearch has been performed.

Let p~ denote the value of the parameter before being modified; if p = p;, then
oM(0.p7) > 0¥'(0,8) 2 =4, > 3Bullpl* — 135llc - sll, (6.3.4)
and if p = py,
M(0,p7) > —piZTH Zp, — ||él1* > - Buallpll? 6.3.5
¢ (0,p7) > —p; pz — |l > =Bullpll” (6.3.5)
From
oN'(0.p7) = pTg + (22 = )T(c = 5) = p7|c — s]|?
and the previous equations,
o= =pTHp - 6™ (0.p7)+ (20 = ) (e = 8) = p|lc — )?
< Bullpll® + (32 + 122 = ullle = sl = p7]le = s||.
From the nonnegativity of p~|lc — s||* and the boundedness of the Lagrange multiplier
estimate the desired result follows. §

The proof of Lemma 3.6.2 does not require any modification for this case. The proof of

Lemma 3.6.3 needs to be slightly modified, as follows.
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Lemma 6.3.4. There erists a bounded constant M such that, for alll,

k[+]—1

o Y. llewpill? < M. (6.3.6)
k:k‘

Proof. In the case when a normal linesearch is used, the proof follows along the same lines
as the proof for Lemma 3.6.3. For the case when a curvilinear search is used, consider the
following argument.

The subscripts 0 and A" denote quantities associated with iterations k; and k4 respec-
tively. Consider the identity

K-1
¢ — o% = D (85 - 8i), (6.3.7)
k=0

and observe that the termination criterion for the linesearch (6.2.14) and the fact that the

penalty parameter is not increased, imply that for 0 <k < K -1,
¢ — ¢ 2 —oalef (6.3.8)

where 0 < ¢ < 1. Since ai, o and 3y are positive, combining {6.3.7), (6.3.8) and the result

of Lemma 6.3.1 gives

K-1
%UﬁH Z afllpell® < ¢§ - 5.
k=0
Rearranging terms we obtain
K-l
308n Y llowpill® < 65 - o5 (6.3.9)
k=0

The result then follows by multiplying (6.3.9) by po and using Lemma 3.6.2. §

Lemma 3.6.4 does not require any modification.

Lemma 3.6.5 applies directly to the case when a normal linesearch is performed. The
corresponding version of this result for the case when we use a curvilinear search is given

in the following lemma.

Lemma 6.3.5. For 0 < 0 < ay,

"

05" (0) < —60 L (0) — 120465 (0) + Nlpill?

where N is a constant independent of k.
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Proof. The third lerivative of ¢ is given by

C‘)C”'(Q) = 60TV2F (2, (2av + w) + Y (2av; + w;)(2av + u))TV?F(xO,)(‘Zav + w)
_ Of'“(a) + p(’ﬁgm(a),
v here
@f"'(n) = G[T(VC(IQ)('ZOU + w) — 2au; — uz) + 6(2at; + l'z)T(VC(Ia)” - 2"1)

4+ 35,20ty + t2,)(2av + w)TV%¢i(24)(2av + w) + 63 M0, 0TV ei(24)(2a0 + w)
+ 5 A Rav + w200 + w)TVZc,-(r(,)(Qav + w)

and

1

05" (a) = 6(Ve(za)(200 + w) — 201, ~ uz)T(QVc(za)v - ‘2u1)

+ 35 (Veilza)(2av + w) = 20, - w3, ) (200 + w)TV2e,(24)(200 + w)
+ Ti(eilza) = s0,) Tul2004 + wi)(200 + ) Viei(za) (200 + w)
+ 6% (2a) = 50, ) 079 %ei{z0 ) (200 + w).

To compute a bound for the third derivative, the following Taylor expansions are useful:

Vel(zo)(2av+w)=2au;, —uz, =20 (c,-—s,-+w,' -~ wTV2c,'uz—(2(w+ U))Tvzci(zi)(20v+u')),
ci(ra) ~ sa, = (1 — a?)e; — si) — a? (wl + -;-wTV2c,w - —(201) + w)TV2c,( (2av + u'))

From these results, the definitions of v and w and Lemmas 6.3.4 and 3.6.4, it follows that

"

0" (a) = 2at](c - 5) + 12apllc - s|I* + O(|Ipl*)
= 2tatl(c - ) + 6awT™V? Fw + 12a¢"v + 12a(A - t1)(c - s) — 6ad°" (0) + O( Ulrll®)
= 12apu"(c = 5) + 12a9Tv — 629 (0) + O(]|p}}?).

We must now consider two cases. If v # 0 we can write

e

o (a) = 1200T(g — ATp) — 600" (0) = 12apTs + O(IIpll?)- (6.3.10)
and if w # 0 but v = 0 then

i

o () = 12awl(g — ATp) = 6a0°"(0) = 1200 (0) — 12ap"s + O(|Ipl?).  (6.3.11)
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From condition C8 on the multipliers, implying that for large enough k. x%s > 0, the final

result follows:

~

o (a) € —6a¢°"(0) = 1206 (0) + N|jp||? (6.3.12)

for some positive constant N. 1
It is now possible to prove that the steplength oy is also bounded away from zero in
the case when a curvilinear search is performed. For the normal linesearch. the equivalent

result is given in Lemma 3.6.6.
Lemma 6.3.6. If a curvilinear search is performed, the steplength ay. (0 < ap < 1) satisfies
at .
of (k) — 65 (0) < U?d)f. (0)

and ap > o, where 0 < o < 1, and & > 0 is independent of the iteration.

Proof. We show that a step satisfying the conditions for the curvilinear search termination
criteria exists and is uniformly bounded away from zero. To take into account the variant
in the termination conditions introduced for case b), let & denote a given initial value. to
be selected as either 1 or &.

Assume that condition (6.2.14a) is not satisfied for a = &; that is,

-2
6°(G) > ¢°(0) + o%&”(or

Define )
by (@) = 6%(a) ~ ¢°(0) — o—‘;—asC”(O),
so that
vl (a) = 6% (@) — cas” (0).
Vi) = 67 (a) = ad°"(0).
For o = 0,

)
=

¥ (0)
¥(0) = ¢ (0) <0,
P0) = (1 - a)¢C (0) < 0.
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Define also \
¥nf@) = ¢°(a) = 6°(0) = nao®(0) - n=-6"(0).

From (@) > 0, there must exist a value a; € (0,a) for which ¥, (a;) > 0. Otherwise,

if wj(a) < 0 for all a € [0, &), integrating on this interval we have

52
¢°(&) < ¢°(0) + nae” (0) + 167" (0), (63.13)

implying

L%M)<mw“m)+";”d%“m)<a (6.3.14)

Let a; be the smallest such point, implying that ¥;(a) < 0 for all a € [0, ). If we integrate

again between 0 and a,.
2
. ' 44 " -
6%(a1) < ¢°(0) + 116 (0) + n5-67(0), (6.3.15)
and )
t Q "
Yo(a1) < na1g®(0) + (n - 0) 514 (0) < 0, (6.3.16)

so g satisfies the termination conditions.
For a; we have
¢ (a1) — 1o (0) — nay¢° (0) = 0, (6.3.17)
and using a series expansion for ¢’

2
o' (a1) = 6°'(0) + 16 (0) + ZLo7(8), (6.3.18)
where 6 € (0,a;].
The previous equations imply
of

> " (8) =0, (6.3.19)

(1 - m8°(0) + ay(1 — n)¢° (0) +

and as we know that a positive root exists, we must have ¢¢" (8) > 0. The root is given by

¢<"(0) I s"(0))" 6°'(0) .
A = - 1 - PETIITN 1 - 2 1 - 2 1 - -—W—.’ . '2
(¥ ( 7))¢Cm(6) + ( T)) <¢C (0)) ( 7’)¢C (0) (6 3 O)
and the following bound holds:
ay > max( -2(1 - 1))%6—,,7((%)5, \/—2(1 - 71)5(_;,,,((?9—)) ) (6.3.21)
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From property P4, ¢"(0) < —=8,]Ip||* and

~1

6"(8) < —18 min(677(0).6°(0)) + N{[plf*

for some N > 0, giving

21 —m)Bs (201 = 1)Bu
> max , , 6.3.22
o= ( 183, + N V188, + N (0-3:22)
completing the proof. 1
We can now present the global convergence theorem for this algorithm.
Theorem 6.3.1. The algorithm described in this chapter has the property that
lim ||pe]] = 0. (6.3.23)
k—o0

Proof. Tl proof is similar to the one for Theorem 4.3.1. We include it here for complete-
ness.

If ||pk]] = O for any finite k, the algorithm terminates and the theorem is true. Hence
we assume that ||p|| # 0 for any k.

When there is no upper bound on the penalty parameter, the uniform lower bound on
a from Lemmas 3.6.6 and 6.3.6. and the bounds on the growth of the penalty parameter
given by Leninas 3.6.3 and 6.3.4, imply that for any § > 0 we can find an iteration index
K such that

Ipe|l € 6 for k> K,

which implies that ||pi|] — 0, as required.

In the bounded case, we know that there exists a value j and an iteration index A such
that p = j for all k > K. We consider henceforth only such values of £.

The proof is by contradiction. We assume that there exists ¢ > 0 and an infinite
subsequence {k;} such that ||px,|] > € for all :. Consider only indices ¢ such that k; > K.
Every iteration after i must yield a strict decrease in the merit function because, using

Lemmas 3.6.6, 6.3.1 and 6.3.6, and the fact that the penalty parameter is not modified,

ola) - ¢(0) < —1aa®Byu|pl* < 0.

The adjustment of the slack variables s in step (ii) of the algorithm can only lead to a further
reduction in the merit function, as L is quadratic in s and the minimizer with respect to s;

is given by ¢, — A;/p. For iterations from the subsequence we have

k) — Th) < HTh41) — Blak) S —F0a’Bue’.
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Therefore, siuce the merit function with p = p decreases by at least a fixed quantity at
every step in the subsequence, it must be unbounded below. But this is impossible, from

assumptions Al, A2 and Lemma 2.4.1. Therefore, (6.3.23) must hold. &

Corollary 6.3.1.

lim |l — 2¥)j = 0.
k—o0

Proof. The result follows immediately from Theorem 6.3.1 and Lemma 3.4.1. §

Corollary 6.3.2.
klimr IAe =AY = 0.

Proof. 'T'he result follows from Lemma 3.7.1, given the results in Lemma 3.6.6 and Corol-

larv 6.3.1. &

6.4. Rate of convergence

After global convergence has been established, the next step is to prove that under certain
conditions the algorithm has a quadratic rate of convergence. Note that in this section
we can alwavs assume that Lemma 6.2.1 applies, as we are only interested in the limiting
hehavior of the algorithm. Consequently, we need only consider the case when a normal
linesearcl is used.

Again. it is necessary to start by presenting some results on the growth rate of the

penalty parameter. The next lemma establishes property P7 for the algorithm.

Lemma 6.4.1. If there erists an infinite subsequence {k;} of iterations in which the penalty

parameter is modified,
. 2
Il”ipklllpklll =0,
(III(I

fim pgllex, — skl = 0.
l—n~c

Proof. We drop the subscript & in what follows. From the definition of g,

pallr = sl = 126 + bll,




[
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and from the fact that |[bg|| — 0 as |[px|| — 0, it must hold that
lim {|2&, + bx,|| = 0.
=
Assume that {[p|| € ¢s. From (6.3.2),
o™ (0.p2) < = Byllpll* < 0,

and from
6" (0,4p1) =0

it must hold that py; < 2p,, implying that
lim py,|lex, — skl = 0.
=~

We can now use (6.3.3) to get
. 2
Ilnn PPl = 0.

completing the proof. 1
The proofs for Lemmas 3.8.1, 3.8.2 and 3.8.3 hold for this algorithm.
Conditions for quadratic convergence

‘The last vequirement for the proof of quadratic convergence is to establish that a unit step
is always takon for points close enough to the solution (property P8). The condition needed
to prove this result, and to ensure that the sequence {z; — x*} converges quadratically, is

a slightly modified version of condition C12 on the multipliers:

C12”. The multiplier estimate satisfies
i = Nl = OCllew + e = 2.

Lemma 6.4.2. If condition C12” is satisfied, there ezists an iteration inder k such that

for all indices b >k a unit steplength is aceepted: oy = 1.

Proof. Assumie that ||y is small enough so that a normal linesearch has been performed.
Given that condition C11 in Chapter 4 is trivially satisfied for this algorithin {remember

that i = 117), from Lemma 1.4.3 we have that

ek + pr = =¥ |l = olllex = 2||:
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using this result in condition C12” we obtain
ik = Al = olllzy — 2*|1).

Hence condition C12 is also satisfied. We can now use the same argument presented in the
proof of Theorem 1.1.1 to conclude that the desired resvit holds for this algorithm. &

The proof of quadratic convergence is given in the following theorem.

Theorem 6.4.1. The algorithm presented in this chapter converges guadratically.

Proof. 1t is enough to show that ||r + p — 2*|] = O(Jjx = 2*||?), as the previous lemma
showed that a unit step is always taken for large k. Assume & to be large enough so that

Pi 1s obtained as the solution of the QP subproblem, and the correct active set has been

tdentified.
We drop the jteration index & in all that follows. Consider first the decomposition of

x - .

£+ p =27 into null-space and range-space components:
x v

r—r =Zu+ V.

For the range-space component, consider the series expansion restricted to the active

constraints at the point:
0= =c+ A" =)+ 0(|z - "))
From :Ap = —¢ and the previous decomposition,
Alr+p~-1") =0z - ).

For the null-space component, consider the corresponding Taylor series expansions

around a:

AN = gF =g+ VAR - 1)+ Oz - TP
AN = AT L T AT - o)+ Oflr - .

Combining these two results,

Hir =2+ AT = g+ T = XS %(r = 25+ O()r = IF7).
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and from fp + g = A4,
Hir+p =25+ AT = i) = T = M) Ve - 2) + Ol - 2*%).
Now using condition C12” on the multiplier estimate,
i = X = Ollzi + pe — 2],

and assuming that ||p]| is small enough so that a step of one is taken in all iterations and

therefore Ay = py_1. the previous equation reduces to
H(z+p-2*)+ ATON - 1) = O(||z - =*||).
Putting these results together,

H AT r+p-z

= O(||z - =¥)1?).
o i (lz =27 ]]F)

and using the non-singularity of the reduced Hessian and the Jacobian of the active con-

straints at the solution.

r+p- zt %112
. le - 2*)
mplying
*
T -z i
lim l—hﬂ———ﬂ =L < 0,

ko lzx — 2

completing the proof. @

6.5. Summary

In this chapter we have introduced and analyzed a third algorithm based on the framework
algorithm of Chapter 2. Its distinctive feature is the use of exact Hessian matrices of the
objective and constraint functions. As before, the search direction is obtained from an in-
complete solution for the QP subproblem. Some conditions on the incomplete solution have
been presented that allow some convergence properties of the algorithm to be established.

The results are:

e When the search direction satisfies the conditions introduced in Section 6.1, the mul-
tiplier estimate satisfies conditions C7-C9, and the Hessian for the QP subproblem,
Hyi. is the exact Hessian of the Lagrangian function, then the algorithm is globally

convergenl.
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o If the multiplier estimates py satisfy the following condition:

C12". {ljiix = A'F = O(llrg + pe = %))

Then the algorithm converges quadratically.




Chapter 7

Numerical Results

In this chapter we present numerical results obtained from an implementation of the al-
gorithm described and analyzed in Chapter 4. The implementation has been written as a
modification of NPSOL. with the only difference being the use of an incomplete solution
for the QP subproblem as the search direction, and the consequences of this change on the
rest of the algorithm. The details of the modiiication are given in the following section.
The purpose of the testing reported in this chapter is to demonstrate that the efficiency
and robustuess of the modified algorithm are comparable to those of NPSOL. Naturally, we
can only test the hvpothesis on the domain of problems NPSOL is designed to solve, namelv
problems having a moderate number of variables and constraints, although on these prob-
lems the opportunities for improvement are limited, as we discuss in later sections. What
this implementation really tests is whether the introduction of flexibility in the determina-

tion of the scarch direction has a significant cost.

7.1. Implementation

In this section we describe the implementation used for the early-termination rules intro-
duced in Chapter 2. The rest of the algorithm is identical to NPSOL, and a detailed
description of other implementation issues can be found in Gill et al. [GMSWRS&6Ga].

From the kth QP subproblem, the search direction py is computed according ta the
following steps. (The subseript & corresponding to the iteration number is dropped from

now on.)

126
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o An initial feasible point pg is obtained following the same procedure as NPSOL. Con-
ditions (2.2.6) and (2.2.7) have not been implemented, as the feasibility phase in

NPSOL scems to give results that are adequate with respect to these conditions.

e The solution process continues until the first stationary point p is reached, and the
corresponding QP multipliers i are computed. In all that follows we work with a

multiplicr vector g that is weighted by the norms of the corresponding constraints,
pi = fhillas),.
o Let ¢, denote machine precision. If
Vi oy > —\/en. (7.1.1)

then p is taken as the search direction.

o If (7.1.1) does not hold, we can take a step away from a subset of the active constraints
while decreasing the value of the QP objective function. To identify the set of active

constraints to be deleted, define
fmin = MIR LG,
t
and introduce a vector ¢, as

“(l,'” if M < ﬂmb#min»

0 otherwise.
For the results presented in the following sections, Smp = 1073,

e There is also a limit on the maximum number of constraints to be deleted. If the
previous condition is satisfied by more than a specified number of active constraints,
ity only the 3., ones having the smallest multipliers are deleted. For the results
given. ;3,,; = 50. For most problems this limit has no effect, since the total number of

constraints js less than 50.

e The direction away from the selected constraints is obtained as the least-norm solution

of the systewm

Ad = e}
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that is, we define

dy = (AY)le;,  dp =0,

to obtain

d=Ydy.

If a. denotes the step to the nearest inactive constraint, and a,, is defined as in
(2.2.9):
o - o+ Hp)d
mo dTHd

we define a as in condition C3:
a = min(ae, am. ),
where ay, is 10'° for this case.

We obtain the search direction p from (2.2.11):

p . .
D otherwise,

{ prad i |pl} < Bupllp + ed],
where J,, = 100; with this value the step ad is accepted in nearly all cases.
P

Finally, the multiplier estimate used in the linesearch is taken to be the QP multiplier

if p = p. Otherwise, it is taken to be the least-squares estimate A, obtained from

AATA, = Ag.

Test problems

The two algorithms, NPSOL and its variant vsing an incomplete solution for the QP sub-

problem as the scarch direction, have been compared by solving a collection of 114 problems

from the literature. Some features of these test problems are given in Table 1, along with

the “optimal™ function values obtained in the actual runs.

The problems have heen obtained from the following sources:

o Problem 1 is the example problem distributed with NPSOL; its description can be

found in {GMSWS86a]. Problems 3 and 4 are slight reformulations of the same problem,
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where the bounds —1 < rg < 1 have been replaced by the constraint z3 < 1. Problem

4 uses the same starting point as Problem 1. Problem 3 uses the starting point

o Descriptions for problems 6 and 12-15 can be found in [MS82]. The version of problem
6 considered is the one corresponding to a value T' = 10. Problems 12 and 13 start
from point (d) for Wright No. 1 as indicated in the reference, while problems 14 and

15 start from points {a) and (b) for Wright No. 9, respectively.

o A description of the SQUARE ROOT preblems (17-20) and of EXP6 (9) can be found

in Fraley [Fra8s].
o Problems 21-30 were obtained from Boggs and Tolle [BT84].
o All problems having names starting with “HS” are from Hock and Schittkowski [HS81].

o Problems 85-95 can be found in Dembo [Dem?76].

All the above problems have been used in the past to test NPSOL. It should be noted that
the problems in this group are small; the average number of variables is 10, and the average
number of coustraints is 6. Nevertheless, many of these problems are considered hard to
solve. Morcover, for some of these problems the assumptions made in Chapter 2 to establish
the convergence results fail to hold: for example, in some cases the Jacobian at the solution
is singular. or no feasible points exist for some QP subproblems.

In addition to the previous set, the algorithms have been tested on another group of

problems:

e The structural optimization problems 99-11.4 are described in Ringertz [Rin&®8]. The
letters =17 and “E” in the problem name indicate if the formulation used included
explicitly the displacement varjables (“E™) or eliminated them in advance. Alsa, the
following nnmber (10, 25, 36 or 63) denotes the number of bars in the truss considered.
Finallv., whenever a number is included at the end of the name (006, 010 or 06G0). the

initial point has been modified to be r; = 6. 10 or 60 respectively.

These problems have been introduced because of the atypical behavior of quasi-Newton

SQP algorithins on them. For this group. the ratio of QP to nonlinear iterations is large

N
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when compared to the size of the problem; on the first test set (problems 1-98) the average
ratio for NPSQL is 2 QP iterations per nonlinear iteration, while on problems 99-114 the
average ratio is 30.

The normal behavior of NPSOL on the first set of test problems is to require a relatively
large number of QP iterations in the first few nonlinear iterations. Typically, the number
of QP iterations declines exponentially until near the solution, when only one iteration is
required. As a result, significant savings achieved by incomplete solution of QP subproblems
in the early iterations are masked by a large number of subproblems requiring only a few
QP iterations. As an example, for problem 98 the largest number of QP iterations needed
in any nonlinear iteration is reduced from 57 for NPSOL to 15 for the algorithm using early
termination. This effect is much less clear when we look at total numbers of QP iterations
{244 for NPSOL vs. 170 for early termination).

The STRUC problems depart from this “standard™ behavior, in the sense that the
number of QP iterations declines much more gradually. (Although only one QP iteration
is “equired in the end, most nonlinear iterations require more.) This offers the possibility
of observing the reductions that can be achieved by using the early-termination criterion,
with limited distortion from the asymptotic behavior of NPSOL.

Finally. the problems in this second group are larger than the ones presented above; the
average number of variables is now 55, and the average number of constraints is 100. For
all the reasons mentioned, this set of problems provides a better environment in which to
test the ability of the proposed early-termination criterion to reduce the total number of

QP iterations.

Computing environment

Version 4.02 of NPSOL was used in the comparisons, and all parameters used in the code
were given their default values (see [GMSW8G6a]). No attempt has been made to improve
the results by sclecting a different set of paramecters, as the main goal of the comparison is
to determine the reliability of the changes introduced in NPSOL.

The runs were performed as batch jobs on a DEC VAXstation Il with 5 megabytes of
main memory. The operating system was VAX/VMS version 4.5, and the compiler used

was VAX FORTRAN version 4.6 with default options.
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TABLE 1

Problem Set Description

Linear Nonlinear Optimal
Noo Problem name Variables constraints constraints objective
1 NEPSOL SANMPLE PROBLEM 9 4 14 —~.1349963e+01
2 SINGULAR 2 0 2 .0000000€ +00
3 HEXAGON 9 4 15 ~.1349963e+01
4 HEXAGON (ALT. START) 9 4 15 ~.1349963e 401
5 LT 7 7 0 .9295973e+06
6 ALAN MANNE'S PROBLEM 30 10 10 —.2670099¢+401
7 ROSEN-SUZUKI 4 0 3 —.4400000e+02
8 QF PROBLEM 7 7 9 —.1847785¢+07
9 EXPo 6 0 0 .1866481e—19
10 STEINKE2 6 0 4 .4000131e~03
11 NORWAY 7 6 0 - .2402344e+02
12 MHWY 5 0 3 .2787187e+02
13 MHWy 5 0 3 ~.3618808e+02
14 MW INEQUALITY 1 5 0 3 ~.2104078e+03
15 MHWY INEQUALITY 2 5 0 3 — .6043539¢ 404
16 WOPLANT 12 3 5 .1555716e+02
1T SQUARE ROOT 1 9 0 9 .2500000e +04
18 SQUARE ROCT 2 9 0 9 2999795 +01
19 SQUARE ROOT 3 9 0 9 .2000000¢+01
20 SQUAKRE ROOT 4 4 0 4 .2500000e+04
21 BT1 2 0 1 ~.1000000e+01
22 B2 3 0 1 .3256820e—01
23 BT3 5 3 0 .4093023e+01
24 BT 3 1 1 —.4551055¢—03
25 BT3-11S63 3 1 1 9577426e+03
26 BTe-HSTT 5 0 2 .2415051e+00
7 BI7 5 0 3 .3065000e+03
28 BTS 5 0 2 .1000000e+01
29 BT9-HS39 4 0 2 ~.1000000€+01
30 BTI10 2 0 2 —.1000000e+01
31 BT11-HSTY 5 0 3 9171343e~01
32 BT12 5 0 3 6188119e+01
33 BT 5 0 1 .0000000€ +00
31 POWELL TRIANGLES 7 0 5 .2331371e+02
35 POWELL BADLY SCALED 2 0 1 .1305195¢—23
36 POWELL WRIGGLE 2 0 2 —.1911618e-15
37  POWELL-MARATOS 2 0 1 —.1000000e+-01
38 HS72 4 0 2 .7266794e+03
39 HST3 (CATTLE FEED) 4 2 1 2989438402
40 HS107 9 0 6 .5055012e+04
41  MUKAIL-POLAK 6 0 2 .5000000e +01
42 INFEASIBLE SUBPROBLEM 2 1 1 —
43 HS26 3 0 1 .1969433e~20
44 HS32 3 1 1 .1000000e+01
45 HSas 5 0 2 .1936782¢—22
46 Hss1 5 3 0 .3851860¢~32
47 HSss2 5 3 0 .5326648¢401
48 HS53 5 3 0 .4093023e4-01
49 PENALTYL A 50 1 0 4313635¢~01
50  PENALTY1 B 50 ] 0 .4313635¢~01
51 PENALTY1 C 50 1 0 .4313635¢~01
52 HS13 2 0 1 .1002181e+01
53 HS61 3 0 1 6299842¢+04
54 HSis 3 0 1 9535289¢+00
55  HS70 4 0 1 .7498464e~02
56 HS7) 4 0 2 .1701402e402
57 Hs74 4 2 3 .5126498e+04
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TABLE 1 (CONT.)

Problem Set Description

Linear Nonlinear Optimal
No. Problem name Variables constraints constraints objective
58 HSTs 4 2 3 .5174413e+04
59 HS78 5 0 3 —.2919700e+01
60 HSs0 5 0 3 .5394985e—01
61 HS81 5 0 3 .5394985e—01
62 HS8¢ 5 0 3 —.5329025e+4-07
63 HS85 5 0 38 —.1905155e+01
64 HS86 (COLVILLE 1) 5 10 0 —.3234868e+02
65 HS8T (COLVILLE 6) 6 0 4 .8927598e+04
66 HS93 6 0 2 .1350760e+03
67 HS9s 6 0 4 .1561953e—01
68 HSS6 6 ] 4 .1561953e—01
69  HSoT 6 0 4 .3135809e+-01
70 HSes 6 ] 4 .3135809e+-01
71 HS99 7 0 2 —.8290102¢+09
72 HS1w 7 0 4 .6806301e+03
73 HS104 8 0 5 .3951163e+-01
T4 HS1035 8 1 o .1138418e4-04
75 HS108 (HEXAGON) 9 0 13 —.8660254e4-00
76 HS109 9 1 8 .5362069e+04
77 HSL0 10 ] 0 —.4577847e 402
78  HSt11 10 0 3 —.4773239¢4-02
79 HS112 (CHEMICAL EQ.) 10 3 0 —.4776109e+02
80 HS!113 10 3 5 .2430621e402
81 HS14 10 5 6 —.1768807e 404
82 HS117 (COLVILLE 2) 15 0 5 .3234868e+02
83 HS118 (LC PROBLEM) 15 17 0 .6648204e+03
84 HS119 (COLVILLE 7) 16 8 0 .2448997e+03
85 DEMBO 1B 12 0 3 .3168222e+01
86 DEMBO 2-HS83 5 0 6 .1012243e+05
87 DEMBO 3 7 4 10 .1227226e+04
88 DEMBO 4A 8 ] 4 .3951163e+01
89 DEMBO 4C 9 0 5 .3952139¢+01
90 DEMBO 5-HS106 8 3 3 .7049248e+04
91 DEMBO 6-HSi16 13 3 10 .9758751e+02
92 DEMBO 7 16 8 11 .1747870e+03
93 DEMBO 8A 7 0 4 .1809765e4-04
94 DEMBO 8B 7 ] 4 .9118806e+03
95 DEMBO 8C 7 0 4 .5436680e+03
96 OPF 67 0 60 .9927005e+00
97 GBD EQUILIBRIUM MODEL 44 38 6 .4510281e-16
98 WEAPON ASSIGNMENT 100 12 0 —.1735019e+04
99 STRUCII0KON 10 0 11 .4156398e+ 04
100 STRUCE10KON 18 10 8 .4156398e+04
101 STRUCIHIGVAN 10 0 12 .5076669¢4-04
102 STRUCE10VAN 18 10 8 .5076669¢ 404
103  STRUCI25006 8 0 74 .5451627e+03
104 STRUCE25006 44 50 36 .5451627e+03
105 STRUCI25DAT 8 0 74 .5451627e+03
106 STRUCE25DAT 14 50 36 .5451627e+03
107  STRUCI36DAT 21 0 76 .3389915e+05
108 STRUCE36DAT 75 72 54 .3389915e+405
109 STRUCI63040 63 0 128 6117064e404
110 STRUCE63040 147 126 84 6117064e+04
111 STRUCI63060 63 0 128 6117064e+04
112 STRUCEG3060 147 126 84 6117064e+4-04
113 STRUCIE3DAT 63 ] 128 6117064¢+04
114 STRUCE63DAT 147 126 84 .6117064e404
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7.3. Results

Tlie results obtained from running both algorithms on the test set described in the previous
section are presented in Table .

The parameters chosen to characterize the relative performance of both algorithms have
been: the number of outer (nonlincar) iterations for each problem; the number of calls to
the routine computing the values of the objective function, the constraint functions and
their derivatives (function evaluations); the total number of inner (QP) iterations for the
problem (including the number of iterations necessary to compute a feasible point); and
the running (CPU) time needed to solve the problem. The results corresponding to both

algorithms are given as a single entry in the tables, in the form
NPSOL result/Early-termination result.

Given that many of the problems are not convex, the algorithms may converge to dif-
ferent solutions. A few such events are indicated in Table 4. Another possible outcome is
failure—that is, the algorithm terminates without finding a solution, because the iteration
limit has been exceeded, because no significant progress can be made at the current point
with respect to the merit function, or because the objective or constraint functions need
to be evaluated at a point for which they are not defined in the code. Such failures are
indicated by “—".

To summarize the results from the test set we now give statistics for the whole set of
problems. We start by presenting in the following table the number of failures for both
algorithms. These values illustrate the reliability of the early-termination algorithm: it is
able to solve 98% of the number of problems solved by NPSOL, and 92% of all the problems
attempted.

TaBLE 2

Problems Successfully Solved

NPSOL Early termination

107 105

Table 3 presents a summary of the results for the four quantities monitored in Table 4.
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The values have been computed as the geometric means for the ratios of the values for
NPSOL and for the early-termination algorithm; that is, entries larger than one indicate
that the corresponding value for NPSOL is larger than the value for the early-termination
code (excluding those problems where one of the algorithms failed). Separate entries have
been provided for problems 1-98 (the smaller problems), and for problems 99-114 (the

structural optimization problems).

TABLE 3

Average Behavior: NPSOL vs. Early Termination

Problems

All 1-98  99-114

Nonlinear iterations 0858 979 1.041

Function evaluations | .994 .999 963

QP iterations 1.190 j 1.112 | 1.884

CPU time 1.043 | 1.022 | 1.200

We now comment briefly on the implications of these results.

e The eariy-termination rule seems to behave very well regarding the numbers of non-
linear iterations and function evaluations; even if we are now using a search direction

of “worse quality™ than in NPSOL, the numbers are very close for both algorithms.

e The number of QP iterations is reduced by 20% for the complete set. When judging
this figure we must take into account that the problems are small, implying that
the number of QP iterations required per nonlinear iteration is also small. (In fact,
the average value for the test set is 5.6 QP iterations per nonlinear iteration.) The
opportunity for improvement is correspondingly limited. Moreover, both codes use the
active set at the solution of the previous QP subproblem as a prediction for the correct
active set in the current subproblem, resulting in a small number of QP iterations close
to the solution. Finally, the carly-termination rule still requires a feasible point, and

the feasibility phase is the same as in NPSOL. When this phase accounts for most
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of the total number of iterations, as with the STRUC problems. the possibility of

improvement is further diminished.

Nonetheless, it should be noted that for problems 99-114 the improvement obtained
15 siguthcantly greater than 20v, as wae mean ratio is wow 183 in fact, when -
fouk onlyv at the larger problems, the relative performance of the ecarly-termination
algoritlini impioves markedly. This offers the promise that for even larger problemss

the results obtained may be substantially better than the values shown above.

o The CPU time required by the early-termination algorithm is lower than the time for
NPSOT . but by a factor that is much smaller than for the »rmbar of QP iterations.
This is due not only to the fact that function evaluations can be expensive when
compared to the effort to solve each QP subproblem, but also to some dewdils in
the implementation that have been chosen to affect the number of QP iterations,
even at the expense of running time.  For example, the multiplier estimate used
for the linesearch (the least-squares multiplier) is expenscive to compute when many
constraints are deleted in the last step, as the factorization for the Jacobian of the

active constraints must be updated. There are still options to be explored that might

improve the running times for the modified algorithm.

Finally, Figures 1 and 2 show plots of the results included in Table 4, in an attempt to
make these results more easily understandable. The vertical axes give the base 2 logarithms
of the ratios between the corresponding values for NPSOL and the early-termination (ET)
algorithm. A value of 1 would correspond to a case in which NPSOL requires twice the
number of noulinear iterations, or function evaluations, etc. needed by the early termination

algorithm.
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TABLE 4

Numerical Results

* Failed to solve the problem.
t Converged to a different minimizer.

Nonlinear Function QP CpPU
_No.__ Problem name iterations evaluations iterations  time (s)
1 NPsOL SAMPLE PROBLEM 12/13 16/18 45/34 3.69/3.61
2 SINGULAR 15/15 16/16 4/4 1.03/1.05
3  HEXAGON 15/16 21/23 32/29 4.41/4.41
1  HENAGON (ALT. START) 11/11 16/14 35/26 3.56/3.26
5 LCT 7/9 9/11 13/16 .76/.95
6  ALAN MANNE'S PROBLEM 17/17 18/18 40/37 21.13/21.92
T ROSEN-SUZUKI 8/8 11/11 9/9 .81/.81
8 QP PROBLEM 8/10 9/11 23/15 1.10/1.04
9  EXPS 33/53 35/57 38/57 1.96/3.08
10 STEINKE2 -*/5 —/6 —/14 -/ .87
11 NORWAY a/c! 5/7T 34/13 1.23/.65
12 MEHWA 10/10 18/15 14/12 1.31/1.25
13 MHWY 30/19! 56/28 42/24 3.71/2.31
I+ MHWO INEQUALITY 1 28/23 38/28 59740 3.41/2.73
15 MHWY INEQUALITY 2 41/141 58/27 80/24 4.83/1.77
16 WOPLANT 25/29 29/33 44/35 6.85/7.17
17 SQUARE ROOT 1 —r /=" —/— —/ - —/—
18 SQUARE ROOT 2 23/23 36/36 0/0 5.01/5.32
19 SQUARE ROOT 3 6/6 9/9 7/7 95/.94
20 SQUARE ROOT 4 - =" e —f ;-
21 BT1 11/11 19/19 11/1 .81/.83
77 BT2 9/9 14/14 9/9 .71/.70
23 IZT7 2/2 5/5 2/2 .19/.19
24 BTd 12/12 18/18 13/13 .92/.92
25 RT5-HSe3 6/0 9/9 8/8 .58/.58
26 BTo- HS77 15/15 21/21 16/16 1.52/1.54
27 BIT 31/31 56/56 32/32 3.36/3.43
28  BT3 17/17 19/19 17/17 1.25/1.44
29 BTy HS39 13/13 16/16 14/14 as/119
30 BTI10 8/8 /1 0/0 AB[ 52
31 BTi1-HST9 9/9 12/12 10/10 1.05/1.0°
32 Btz 27/27 57/57 28/28 3.04/3.0+
33 BTI3 32/32 44/44 34/34 2.61/2.62
341 POWELL TRIANGLES 23/15 37/16 36/23 3.27/2.28
35 POWELL BADLY SCALED 12/12 15/15 13/13 .85/.85
36  POWELL WRIGGLE 34/32 69/55 60/40 2.77/2.39
37 POWELL-MARATOS 6/6 777 6/6 44/.44
38 HST2 77 8/8 8/8 .69/.67
39  HST3 (CATTLE FEED) 1/4 5/5 4/4 .38/.36
40 HS107 11/11 18/18 27/18 2.77/2.56
41  MUKAI-POLAK 10/10 16/16 13/13 1.08/1.11
42  INFEASIBLE SUBPROBLEM - —/— -—/— —/—
43 HS26 47/47 64/64 48/48 3.39/3.41
44 Hs32 2/4 3/5 3/s .25/.38
45 HSa6 55/55 58/58 56/56 5.26/4.98
46 HS51 2/2 5/5 2/2 18/.14
47 HS52 2/2 5/5 2/2 19/.16
48 1S53 2/2 5/5 2/2 .19/.16
49 PENALTY1 A 16/16 18/19 7/ 20.01/16.49
50  PENALTY1 B 6/7 14/13 67/32 14.77/11.77
51  PENALTY1 C 29/15 85/40 152/65 24.35/11.65
52 Hs13 22/19 23/20 13/10 1.29/1.22
53 HSo 29/43 39/62 47/60 2.34/3.33
54 11S65 8/9 10/11 16/16 .70/.78
55  HS70 36/—* 39/— 39/— 3.33/—
56  HST1 5/7 6/9 9/9 .53/.67
57  HST4 10/26 15/48 14/28 117/2.68




* Failed to solve the problem.

P Converged 1o a different mininizer.
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TasLe 4 (CoONT.)
Numerical results
Nonlinear Function QP CcpPU
No.  Problem name iterations  evaluations iterations tirne (s)
A0 HRNTH 6/3 10/11 /Y L(2/.90
39 HNTS 10/10 14/14 11/11 1.15/1.15
60 HS80 8/8 10/10 8/8 .92/ .92
61 HSs) 14/14 20/20 15/15 1.57/1.60
62 HSR1 —~* /4 - /5 /0 —/.51
63 HS&5 17/14 18/15 33/20 1.00/3.12
64 HSXe (COLVILLE 1) 6/7 8/8 1/ 62/ .64
65 HS’T (COLVILLE 6) 11/8 18/9 18/114 1.63/1.27
686 Isns 12/12 15/15 14/14 1.36/1.38
w7 HsOS 1/1 2/2 1/1 15/.15
68 Hsoa 1/1 2/? 1/1 A7/.05
6o HsoT 3/3 6/6 373 40/ 41
T HSus 3/3 65/6 8/8 43/ .44
T HRoo PRI A1) 71/ 3.99/ -
T2 HStwo 14/14 29/29 18/18 2.07/2.02
T3 HN10 18/18 20/20 213/23 3.36/3.37
T4 Hs1on 43/ -* 61/~ a7t/ - 2T 14/ —
75 HS1OS (HEXAGON) 24/32 45749 5T/8T 6.78/9 36
TH HSoo 11/10 13/11 25/29 3.23/3.26
TT O HS110 6/6 9/9 24/15 T8/.69
T Hs111 41/49 64/ 75 44/572 8.08/9.05
79 HSH2 (CHEMICAL EQY) 19/ ¢ 39/ — 54/ - 2,78/
X0 HS1IB 14/16 19/23 3R/36 3.12/3.41
Rl HS1Y 18/16 19/24 36/33 3.81/3.60
82 HS11IT (COLVILLE 2) 17/18 21/27 96/39 6.75/5.34
A3 HNPIN (LC PROBLENM) 1/4 6/6 20/20 1.35/1.40
R4 HSHIO (COLNVILLE 7) 12/17 16/19 41/47 4.25/5.60
®5  DEMBO B 21/ * 437/ 206/ — 7546/ -
=6 DEMBO 2 HSK3 /4 6/6 4/4 .54/.54
KT DEAMBO 3 9/R 11/9 37/20 2.01/1.78
R& DEMBO aA 19/19 23/23 24/24 3.53/3.31
Ra - LLNIBO AC 13/13 15/15 20/23 3.10/3.20
90 DEMBO 5 18196 17/18 21/24 30/31 2.90/3.04
91 DEMBO 6-HS116 367473 96/69 144/248 21.84/29.65
92 DEMBO 7 19/12 24/15 126/68 15.54/9.82
93 DEMBO 8A 33/42 85/118 us /99 7.52/9.17
a4 DEMBO 5B 29/29 69/71 83/73 6.51/6.45
95 DEMBO 8C 25/27 60/68 Ra/65 6.19/6.06
9% OPF 18/17 19/18 53/51 468.12/456.10
97 GBD EQUILIBRIUM MOD. 5/6 6/7 37/26 6.22/6.10
98 WEAPON ASSIGNMENT 96/73 98/76 244/170 120.78/114.93
we o STRUCHOKNON 18/17 34/30 65/42 13.67/11.73
100 STRUCEIRKON 26/24 19/67 87/81 17.68/20.75
101 STRUCHOVAN 23/19 41/34 54/51 16.30/13.85
102 STHUCELOVAN */24 —/48 -/mn —/19.44
103 STRUCL25006 12/37 68/62 147/85 92.44/80.99
104 STRUCEIS006 20/28 32/36 178/95 357.83/260.79
105 STRIUCRSDAT /12 19/21 24/22 24.75/27.11
106 STRUCEZDAT 52/t 106/37 687/65 647.13/191.44
107 STRUCIGDAT 23/20 38/34 59/46 120.79/108.0%
108 STRUCE36DAT 29/30 53/62 87/90 971.16/1021.87
109 STRUCIG3010 s/ 211/202 6116/3091 8182.13/7159.03
110 STRUCER3040 375/ ¢ 794/ — 3545/~ TT286.64/ —
1 STRUCIE3060 - */98 /244 - /3899 --/8281.02
112 STRUCES3060 63/115 150/316 6675/3407  25090.15/33228.42
13 STRUCIGSDAT 216/136 354/412 Y0-43/2060 125916174 1424.54
114 STRUCEGSDAT 52/72 86/145 BO19/2R58  41793.84/22740.66
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Irom Figures | and 2 it can be noticed that the results obtained present a significant
tack of correlation from one problem to the next; the comments offered earlier in this section
apply when the average behaviors are considered, rather than for each individual problem.
In Figure 1. the values for the numbers of nonlinear iterations and function evaluations are
clearly clustered around zero, with relatively small deviations from the average. In contrast
Lo these results. the predominance of positive values for the number of QP iterations can

be casily appreciated in Pigure 2, especially for those (larger) problems beyvond problem 92.
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7.4. Further work

We conclude the report with some comments on those areas where further improvement in

the algorithm is desirable.

o ['wo of the assumptions introduced in Chapter 2 were the nonsingularity of the Jaco-
bian for the active constraints at the solution, and the existence of a feasible region
for all QP subproblems. Many of the failures in the solution of the test problems can
be attributed to the correspounding subproblems lacking one of these properties (or
being close to violating them). NPSOL includes rules to deal with these difficulties
but thev are not graranteed to be able to cope with all possible situations, particu-
larly in the case of infeasible subproblems. A third related issue that appeared several
times i the solution of the problem set. was the need for a disproportionate effort to
obtain teasible points for the QP subproblems. In some of the problems the work to
obtain a feasible point was far greater than the remaining work needed to compute a
satisfactory search direction. For example, in problem number 114, 80% of the quite

considerable solution time was spent in the feasibility phase by both algorithms.

These last two issues are closely related. It can be expected that a procedure to
terminate the feasibility phase early may not only vield further reductions in the total
number of QP iterations needed to solve the problems, but at the same time may

provide a wayv to deal with infeasible QP subproblems.

e Another open area, also related to the assumptions made in Chapter 2, is the theoret-
ical study of the relaxation of the strict complementarity requirement. Some recent
work on this topic by Burke [Bur89] indicates that it might still be possible to identify
a satisfactoiy active set at the solution in a finite number of iterations. Several other
associated issues are also open: for example, determination of the best strategy to
compute a Lagrange multiplier estimate when the Jacobian is becoming progressively
more ill-conditioned, and study of the theoretical rate of convergence achievable by

the algorithm when strict complementarity does not hold.

e linally. a more general issue is identification of the best strategy for the solution of the
QP subproblems in the large-scale case. This report focused on active-set methods,
but recently there has been great interest in the use of interior-point methods. in

which the inequality constraints are rewritten in the form of equality constraints and
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simple bouuds, and a barrier function formulation is used to move the simple bounds
into the objective funciion. These methods may become a promising alternative for
use within our framework (to solve the QP subproblems), as they seem able to avoid

the expouential complexity associated with determination of the correct active set.

Exploration of these alternatives offers a great number of possibilities for further

research it the quest for a satisfactory method to solve large-scale nonlinear programs.
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